Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Traffic Simulator for Connected and Automated Vehicles

2019-04-02
2019-01-0676
Connected and automated vehicle (CAV) technologies promise a substantial decrease in traffic accidents and traffic jams, and bring new opportunities for improving vehicle’s fuel economy. However, testing autonomous vehicles in a real world traffic environment is costly, and covering all corner cases is nearly impossible. Furthermore, it is very challenging to create a controlled real traffic environment that vehicle tests can be conducted repeatedly and compared fairly. With the capability of allowing testing more scenarios than those that would be possible with real world testing, simulations are deemed safer, more efficient, and more cost-effective. In this work, a full-scale simulation platform was developed to simulate the infrastructure, traffic, vehicle, powertrain, and their interactions. It is used as an effective tool to facilitate control algorithm development for improving CAV’s fuel economy in real world driving scenarios.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Journal Article

Validation of a LES Spark-Ignition Model (GLIM) for Highly-Diluted Mixtures in a Closed Volume Combustion Vessel

2021-04-06
2021-01-0399
The establishment of highly-diluted combustion strategies is one of the major challenges that the next generation of sustainable internal combustion engines must face. The desirable use of high EGR rates and of lean mixtures clashes with the tolerable combustion stability. To this aim, the development of numerical models able to reproduce the degree of combustion variability is crucial to allow the virtual exploration and optimization of a wide number of innovative combustion strategies. In this study ignition experiments using a conventional coil system are carried out in a closed volume combustion vessel with side-oriented flow generated by a speed-controlled fan. Acquisitions for four combinations of premixed propane/air mixture quality (Φ=0.9,1.2), dilution rate (20%-30%) and lateral flow velocity (1-5 m/s) are used to assess the modelling capabilities of a newly developed spark-ignition model for large-eddy simulation (GLIM, GruMo-UniMORE LES Ignition Model).
Journal Article

Validation of Aerodynamic Simulation and Wind Tunnel Test of the New Buick Excelle GT

2017-03-28
2017-01-1512
The validation of vehicle aerodynamic simulation results to wind tunnel test results and simulation accuracy improvement attract considerable attention of many automotive manufacturers. In order to improve the simulation accuracy, a simulation model of the ground effects simulation system of the aerodynamic wind tunnel of the Shanghai Automotive Wind Tunnel Center was built. The model includes the scoop, the distributed suction, the tangential blowing, the moving belt and the wheel belts. The simulated boundary layer profile and the pressure distribution agree well with test results. The baseline model and multiple design changes of the new Buick Excelle GT are simulated. The simulation results agree very well with test results.
Technical Paper

Validation Study for the Introduction of an Aerodynamic Development Process of Heavy Trucks

2014-09-30
2014-01-2444
A challenge for the aerodynamic optimization of trucks is the limited availability of wind tunnels for testing full scale trucks. FAW wants to introduce a development process which is mainly based on CFD simulation in combination with some limited amount of wind tunnel testing. While maturity of CFD simulation for truck aerodynamics has been demonstrated in recent years, a complete validation is still required before committing to a particular process. A 70% scale model is built for testing in the Shanghai Automotive Wind Tunnel Center (SAWTC). Drag and surface pressures are measured for providing a good basis for comparison to the simulation results. The simulations are performed for the truck in the open road driving condition as well as in an initial digital model of the aerodynamic wind tunnel of SAWTC. A full size truck is also simulated in the open road driving condition to understand the scaling effect.
Technical Paper

Validation Studies for an Advanced Aerodynamic Development Process of Cab-Over Type Heavy Trucks

2017-10-25
2017-01-7009
The implementation of an advanced process for the aerodynamic development of cab-over type heavy trucks at China FAW Group Corporation (FAW) requires a rigorous validation of the tools employed in this process. The final objective of the aerodynamic optimization of a heavy truck is the reduction of the fuel consumption. The aerodynamic drag of a heavy truck contributes up to 50% of the overall resistance and thus fuel consumption. An accurate prediction of the aerodynamic drag under real world driving conditions is therefore very important. Tools used for the aerodynamic development of heavy trucks include Computational Fluid Dynamics (CFD), wind tunnels and track and road testing methods. CFD and wind tunnels are of particular importance in the early phase development.
Technical Paper

Utilizing Finite Element Tools to Model Objective Seat Comfort Results

2012-04-16
2012-01-0074
The comfort assessment of seats in the automotive industry has historically been accomplished by subjective ratings. This approach is expensive and time consuming since it involves multiple prototype seats and numerous people in supporting processes. In order to create a more efficient and robust method, objective metrics must be developed and utilized to establish measurable boundaries for seat performance. Objective measurements already widely accepted, such as IFD (Indentation Force Deflection) or CFD (Compression Force Deflection) [1], have significant shortcomings in defining seat comfort. The most obvious deficiency of these component level tests is that they only deal with a seats' foam rather than the system response. Consequently, these tests fail to take into account significant factors that affect seat comfort such as trim, suspension, attachments and other components.
Technical Paper

Use of Active Rear Steering to Achieve Desired Vehicle Transient Lateral Dynamics

2018-04-03
2018-01-0565
This paper studies the use of active rear steering (4-wheel steering) to change the transient lateral dynamics and body motion of passenger cars in the stable or linear region of the tires. Rear steering systems have been used for several decades to improve low speed turning maneuverability and high speed stability, and various control strategies have been previously published. With a model-based, feed-forward rear steer control strategy, the lateral transient can be influenced separately from the steady-state steering gain. This lateral transient is influenced by many vehicle parameters, but we will look at the influence of active rear steer and various tire types such as all-season, snow, and summer. This study will explore the ability for a rear steering system to change the lateral transient to a step steer input, compared to the effect of changing tire types.
Technical Paper

Update on A-Pillar Overflow Simulation

2018-04-03
2018-01-0717
The management of surface water flows driven from the wind screen by the action of wipers and aerodynamic shear is a growing challenge for automotive manufacturers. Pressure to remove traditional vehicle features, such as A-Pillar steps for aesthetic, aeroacoustic and aerodynamic reasons increases the likelihood that surface water may be convected over the A-Pillar and onto the front side glass where it can compromise drivers’ vision. The ability to predict where and under which conditions the A-Pillar will be breached is important for making correct design decisions. The use of numerical simulation in this context is desirable, as experimental testing relies on the use of aerodynamics test properties which will not be fully representative, or late-stage prototypes, making it difficult and costly to correct issues. This paper provides an update on the ability of simulation to predict A-Pillar overflow, comparing physical and numerical results for a test vehicle.
Technical Paper

Under-hood Thermal Simulation of a Class 8 Truck

2007-10-30
2007-01-4280
A validation study was performed comparing the simulation results of the Lattice-Boltzmann Equation (LBE) based flow solver, PowerFLOW®, to cooling cell measurements conducted at Volvo Trucks North America (VTNA). The experimental conditions were reproduced in the simulations including dynamometer cell geometry, fully detailed under-hood, and external tractor geometry. Interactions between the air flow and heat exchangers were modeled through a coupled simulation with the 1D-tool, PowerCOOL™, to solve for engine coolant and charge air temperatures. Predicted temperatures at the entry and exit plane of the radiator and charge-air-cooler were compared to thermocouple measurements. In addition, a detailed flow analysis was performed to highlight regions of fan shroud loss and cooling airflow recirculation. This information was then used to improve cooling performance in a knowledge-based incremental design process.
Journal Article

Transmission Output Chain Spin Loss Study

2017-03-28
2017-01-1135
Transmission spin loss has significant influence on the vehicle fuel economy. Transmission output chain may contribute up to 10~15% of the total spin loss. However, the chain spin loss information is not well documented. An experimental study was carried out with several transmission output chains and simulated transmission environment in a testing box. The studies build the bases for the chain spin loss modeling and depicted the influences of the speed, the sprocket sizes, the oil levels, the viscosity, the temperatures and the baffle. The kriging method was employed for the parameter sensitivity study. A closed form of empirical model was developed. Good correlation was achieved.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

Transfer Function Generation for Model Abstraction Using Static Analysis

2017-03-28
2017-01-0010
Currently, Model Based Development (MBD) is the de-facto methodology in automotive industry. This has led to conversions of legacy code to Simulink models. Our previous work was related to implementing the C2M tool to automatically convert legacy code to Simulink models. While the tool has been implemented and deployed on few OEM pilot code-sets there were several improvement areas identified w.r.t. the generated models. One of the improvement areas identified was that the generated model used atomic blocks instead of abstracted blocks available in Simulink. E.g. the generated model used an ADD block and feedback loop to represent an integration operation instead of using an integrator block directly. This reduced the readability of the model even though the functionality was correct. Thus, as a user of the model, an engineer would like to see abstract blocks rather than atomic blocks.
Technical Paper

Torque Ripples in Electric Vehicle Drive Quality in Open and Closed Loop Control Environments

2021-04-06
2021-01-0981
Torque ripple of electric motors is a unique feature in Battery Electric Vehicles (BEV) affecting vehicle performance. It is one of the disturbances from electric motors resulting in unpleasant vehicle fore-aft vibrations at specific vehicle speeds. In this study, the torque ripple modeling and simulation procedure has been developed. Critical modeling contents in a full vehicle ADAMS model and a brief overview of the propulsion control are described. Analytical data sets for torque fluctuations (torque ripple) from a couple of different sources are incorporated in the model. The CAE simulation procedure was applied to simulate vehicle performances of a General Motors Battery Electric Vehicle in an early vehicle design phase. Torque ripple phenomena are simulated both in an open-loop and closed-loop propulsion control environment to see how much vehicle fore-aft vibration suppression is achieved by the motor control methods.
Technical Paper

Thermomechanical Fatigue Crack Growth Simulation in a Turbo-Housing Model Using Nonlinear Fracture Mechanics

2023-04-11
2023-01-0596
Turbocharger housings in internal combustion engines are subjected to severe mechanical and thermal cyclic loads throughout their life-time or during engine testing. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermo-mechanical fatigue (TMF) of the material. For the computational TMF life assessment of high temperature components, the DTMF model can provide reliable TMF life predictions. The model is based on a short fatigue crack growth law and uses local finite-element (FE) results to predict the number of cycles to failure for a technical crack. In engine applications, it is nowadays often acceptable to have short cracks as long as they do not propagate and cause loss of function of the component. Thus, it is necessary to predict not only potential crack locations and the corresponding number of cycles for a technical crack, but also to determine subsequent crack growth or even a possible crack arrest.
Technical Paper

Thermal Design Evaluation of Construction Vehicles using a Simulation Based Methodology

2015-09-29
2015-01-2888
Design and evaluation of construction equipments and vehicles in the construction industry constitute a very important but expensive and time consuming part of the engineering process on account of large number of variants of prototypes and low production volumes associated with each variant. In this article, we investigate an alternative approach to the hardware testing based design process by implementing a Computational Fluid Dynamics (CFD) simulation based methodology that has the potential to reduce the cost and time of the entire design process. The simulation results were compared with test data and good agreement was observed between test data and simulation.
Technical Paper

The Lattice-Boltzmann Method: An Alternative to LES for Complex Aerodynamic and Aeroacoustic Simulations in the Aerospace Industry

2015-09-15
2015-01-2575
An overview of the theory and applications of the Lattice-Boltzmann Method (LBM) is presented in this paper. LBM has gained a reputation over the past decade as a viable alternative to traditional Reynolds-averaged Navier-Stokes (RANS) based methods for the solution of computational fluid dynamics (CFD) applications in the aerospace and automotive industries. The theoretical background of the method is presented and the key differentiators to traditional RANS methods are summarized. We then look at current and potential future applications of CFD in the aerospace industry and identify a number of areas where the limitations of RANS tools, in particular with regard to unsteady flows and the handling of complex geometries, prevent a deeper penetration of CFD into product development processes in the aerospace industry.
Journal Article

The Effects of Detailed Tire Geometry on Automobile Aerodynamics - a CFD Correlation Study in Static Conditions

2009-04-20
2009-01-0777
A correlation study was performed between static wind tunnel testing and computational fluid dynamics (CFD) for a small hatchback vehicle, with the intent of evaluating a variety of different wheel and tire designs for aerodynamic forces. This was the first step of a broader study to develop a tool for assessing wheel and tire designs with real world (rolling road) conditions. It was discovered that better correlation could be achieved when actual tire scan data was used versus traditional smooth (CAD) tire geometry. This paper details the process involved in achieving the best correlation of the CFD prediction with experimental results, and describes the steps taken to include the most accurate geometry possible, including photogrammetry scans of an actual tire that was tested, and the level of meshing detail utilized to capture the fluid effects of the tire detail.
X