Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Active Mass Absorber” at a 4×4 Transmition System

2003-11-18
2003-01-3682
The extensive use of rotative machines in the diverse branches of the modern world has made the rising undesirable mechanical and acoustic vibration levels to be a problem of special importance for the machines normal operation as for the communities that are each time more affected by the problem. It makes the study of vibration and acoustic phenomena also to be even more important and the applications of its concepts more sophisticated. Several are the concepts used for decreasing vibration levels, like common dampers, hydraulic dampers, active dampers, natural frequencies changes and others. The choice of use of one or another depends greatly on the engineering possibilities (weight, energy, physical space, other components functional interference, vibration levels, etc.) as well as the cost of implementation of each one.
Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

a new look at High Compression Engines

1959-01-01
590015
THE automotive and petroleum industries have been concerned for many years with the mutual problem of improving the thermal efficiency of gasoline engines. Great progress in refining technology, as well as advances in engine design in recent years, have made it desirable to take a new look at high-compression engines. This paper describes an investigation of the effect of compression ratio on engine efficiency over a range of compression ratios from 9/1 to 25/1. The results show that the thermal efficiency of the multicylinder engines used in this study peaked at a compression ratio of 17/1. The decrease in thermal efficiency at higher compression ratios is due primarily to delay in the completion of the combustion process. This paper received the 1958 Horning Memorial Award.
Technical Paper

Yaw Rate Based Trailer Hitch Angle Estimation for Trailer Backup Assist

2017-03-28
2017-01-0027
In the current Ford Pro-Trailer Backup Assist (TBA) system, trailer hitch angle is determined utilizing the reverse camera of the vehicle. In addition to being sensitive to environmental factors such as lighting conditions and occlusion, the vision-based approach is difficult to be applied to gooseneck or fifth wheel trailers. In this paper, a yaw rate based hitch angle observer is proposed as an alternative sensing solution for TBA. Based on the kinematic model of the vehicle-trailer, an instantaneous hitch angle is first derived by utilizing vehicle yaw rate, trailer yaw rate, vehicle velocity and vehicle/trailer parameters provided by the TBA system. Due to signal errors and parameter uncertainties, this instantaneous hitch angle may be noisy, especially at lower vehicle speed.
Technical Paper

Wheel Torque-Based Control: Transmission Input Torque Determination and Inertia Compensation

2022-03-29
2022-01-0733
Traditionally, the controls system in production vehicles with automatic transmission interprets the driver’s accelerator pedal position as a demand for transmission input torque. However, with the advent of electrified vehicles, where actuators are located at different positions in the drivetrain, and of autonomous vehicles, which are self-driving, it is more convenient to interpret the demand (either human or virtual) in vehicle acceleration or wheel torque domain. To this end, a Wheel Torque-based longitudinal Control (WTC) framework was developed, wherein demands can be converted accurately between the vehicle acceleration or wheel torque domain and the transmission assembly input torque domain.
Technical Paper

Wheel Fight Objective Metric Development

2007-05-15
2007-01-2391
Wheel Fight is the undesirable rotational response of a vehicle's steering wheel due to road input at any or all of the road/wheel tire patches. The type of road input that will cause wheel fight comes in two forms: continuous rough road surfaces such as broken concrete or transient inputs such as pot-holes and tar strips. An objective method to quantify a vehicle's wheel fight sensitivity would be of great value to the vehicle development engineer. To that end, a study was conducted on Ford's Vehicle Vibration Simulator (VVS) to gather subjective responses and use those as a basis for correlation to an objective metric. One road surface known to induce wheel fight consists of using a rubber strip and driving over it while impacting only one side of the vehicle. Under this condition, steering wheel data was acquired on five different light trucks from which paired comparison studies were conducted.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Technical Paper

Wavelet-based Modification of Impulsive Sound Character and Application to Diesel Sound Quality

2005-05-16
2005-01-2271
A wavelet-based technique for reducing the impulsive character of sound recordings is presented. The amount of impulsive content removed may be adjusted by varying a statistical threshold. The technique is validated for a diesel idle sound-quality application. The wavelet-based modification produces a substantial decrease in impulsive character as verified by an objective sound-quality metric for engine “ticking”. Informal subjective assessment of the modified results found them to be realistic and free from artifacts. The procedure is expected to be useful for sound-quality simulation and target-setting for diesel powertrain noise and other automotive sounds containing both impulsive and non-impulsive content.
Technical Paper

Water Avoidance Design Strategy for Capacitive Exterior Handles

2020-01-13
2019-36-0187
Nowadays, capacitive handles are increasing their use in high-end commercial vehicles. This particular handle applies a technology that permits to unlock and even lock the vehicle without a key. As benefit for current life, the customer has the possibility to access and close the vehicles more efficiently and faster, just possessing the key in the pocket or any close compartment that the user is carrying, for example, bag, purse, backpack. Even though, the design of capacitive exterior handle must follow several design strategies to avoid nonfunctional in rainy climate. Water could work as a blocker for the sensor signal captured, special design strategies that must be taken in order to minimize that the liquid could ingress the handle and even be retained on the region that sensor is located.
Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Wall Film Dynamics Modeling for Impinging Sprays in Engines

2004-03-08
2004-01-0099
This paper proposes a film dynamics model for liquid film resulting from fuel spray impinging on a wall surface. It is based on a thin film assumption and uses numerical particles to represent the film to be compatible with the particle spray models developed previously. The Lagrangian method is adopted to govern the transport of the film particles. A new, statistical treatment was introduced of the momentum exchange between the impinging spray and the wall film to account for the directional distribution of the impinging momentum. This model together with the previously published models for outgoing droplets constitutes a complete description of the spray wall impingement dynamics. For model validation, films resulting from impinging sprays on a flat surface with different impingement angles were calculated and the results were compared with the corresponding experimental measurements.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Viscosity Effects on Engine Wear Under High-Temperature, High-Speed Conditions

1978-02-01
780982
Four multigrade engine oils, containing the same base oil plus SE additive package but VI improvers of differing shear stability, were evaluated in 80 000 km of high-speed, high-temperature vehicle service. Bearing, piston ring and valve guide wear, as well as oil consumption, oil filter plugging and engine cleanliness were all worse for the engines operated on the low-shear stability oils. The wear differences were traced to differences in high-shear-rate viscosity, while the cleanliness, filter plugging and oil consumption differences occurred because of excessive wear or polymer shear degradation. These results suggest that engine oil viscosity should be specified under high-shear-rate conditions.
Technical Paper

Virtual Temperature Controlled Seat Performance Test

2018-04-03
2018-01-1317
The demand for seating comfort is growing - in cars as well as trucks and other commercial vehicles. This is expected as the seat is the largest surface area of the vehicle that is in contact with the occupant. While it is predominantly luxury cars that have been equipped with climate controlled seats, there is now a clear trend toward this feature becoming available in mid-range and compact cars. The main purpose of climate controlled seats is to create an agreeable microclimate that keeps the driver comfortable. It also reduces the “stickiness” feeling which is reported by perspiring occupants on leather-covered seats. As part of the seat design process, a physical test is performed to record and evaluate the life cycle and the performance at ambient and extreme temperatures for the climate controlled seats as well as their components. The test calls for occupied and unoccupied seats at several ambient temperatures.
Technical Paper

Virtual Exhaust Gas Temperature Measurement

2017-03-28
2017-01-1065
Exhaust temperature models are widely used in the automotive industry to estimate catalyst and exhaust gas temperatures and to protect the catalyst and other vehicle hardware against over-temperature conditions. Modeled exhaust temperatures rely on air, fuel, and spark measurements to make their estimate. Errors in any of these measurements can have a large impact on the accuracy of the model. Furthermore, air-fuel imbalances, air leaks, engine coolant temperature (ECT) or air charge temperature (ACT) inaccuracies, or any unforeseen source of heat entering the exhaust may have a large impact on the accuracy of the modeled estimate. Modern universal exhaust gas oxygen (UEGO) sensors have heaters with controllers to precisely regulate the oxygen sensing element temperature. These controllers are duty cycle based and supply more or less current to the heating element depending on the temperature of the surrounding exhaust gas.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Vibration Mode Study of Steering Columns for Commercial Vehicles

2008-10-07
2008-36-0193
On the development process of truck vehicles, the dynamic behavior must be considered together with the costs involved in this development. Objective measurements, subjective evaluations and CAE simulations are used in order to support this development process. Ride comfort, acceleration and braking performance, handling and NVH are examples of attributes considered in the dynamic behavior evaluation of a tuck. Some characteristics of steering column vibration, noise and harshness are relevant to guarantee driver comfort level and vehicle safety. In this work, CAE models validated by experimental measurements were used to identify cab and vehicle modes of vibration which have significant influence on steering column response. Using this procedure, an alternative was proposed in order to decrease the amplitudes of cab and steering column vibration.
Technical Paper

Verification of Accelerated PM Loading for DPF Qualification Studies

2009-04-20
2009-01-1089
High gas prices combined with demand for improved fuel economy have prompted increased interest in diesel engine applications for both light-duty and heavy-duty vehicles. The development of aftertreatment systems for these vehicles requires significant investments of capital and time. A reliable and robust qualification testing procedure will allow for more rapid development with lower associated costs. Qualification testing for DPFs has its basis in methods similar to DOCs but also incorporates a PM loading method and regeneration testing of loaded samples. This paper examines the effects of accelerated loading using a PM generator and compares PM generator loaded DPFs to engine dynamometer loaded samples. DPFs were evaluated based on pressure drop and regeneration performance for samples loaded slowly and for samples loaded under accelerated conditions. A regeneration reactor was designed and built to help evaluate the DPFs loaded using the PM generator and an engine dynamometer.
Technical Paper

Vehicle System Modeling for Computer-Aided Chassis Control Development

2005-04-11
2005-01-1432
As the complexity of automotive chassis control systems increases with the introduction of technologies such as yaw and roll stability systems, processes for model-based development of chassis control systems becomes an essential part of ensuring overall vehicle safety, quality, and reliability. To facilitate such a model-based development process, a vehicle modeling framework intended for chassis control development has been created. This paper presents a design methodology centered on this modeling framework which has been applied to real world driving events and has demonstrated its capability to capture vehicle dynamic behavior for chassis control development applications.
X