Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Thermal Management for the HEV Liquid-Cooled Electric Machine

2001-05-14
2001-01-1713
The future of the Hybrid Electric Vehicle (HEV) is very promising for the automotive industry. In order to take a full advantage of this concept, a better thermal performance of the electric motor is required. In this study, Computational Fluid Dynamics (CFD) model was first verified through several prototypes testing and then is going to be used to execute a series of design of experiment via simulation. Based on the thermal studies in this paper, the integrated coolant jacket design has a better performance than that of separated one. The thermal performance of the stator with the 3M coating is better than the one with paper liner. In addition, using 3M coating reduces the packaging size of the stator.
Technical Paper

NVH Challenges and Improvements Implemented in Ford H2RV: An HEV Propelled with a Supercharged Hydrogen Internal Combustion Engine

2004-03-08
2004-01-0061
Ford's H2RV (Hydrogen Hybrid Research Vehicle) uses a Hydrogen fueled Internal Combustion Engine. This engine has a higher compression ratio and a faster fuel-burning rate compared to a conventional gasoline engine. The conventional flywheel is replaced with an electric motor in the hybrid powertrain, which causes higher crankshaft torsionals and is a major NVH source. The engine has a centrifugal supercharger mounted on its front-end dress, which is a big source of NVH. Fans are used to cool the high voltage batteries and to provide ventilation of H2 in the case of a leakage. The body sheet metal has several holes for passive H2 ventilation, battery cooling, plumbing lines, and harness routing. Underhood hardware, due to the hybrid transmission and the H2 ICE, created major packaging challenges for the intake and FEAD NVH. The exhaust muffler volume was limited due to the installation of high voltage batteries and underbody H2 fuel tanks.
X