Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Using a Geometric Toolkit to Link Finite Element Calculations in Sheet Metal Forming Analysis

1994-03-01
940748
Sheet metal forming of automobile body panel consists of two processes performed in series: binder forming and punch forming. Due to differences in deformation characteristics of the two forming processes, their analysis methods are different. The binder wrap surface shape and formed part shape are calculated using different mathematical models and different finite element codes, e.g., WRAPFORM and PANELFORM, respectively. The output of the binder forming analysis may not be directly applicable to the subsequent punch forming analysis. Interpolation, or approximation, of the calculated binder wrap surface geometry is needed. This surface representation requirement is carried out using computer aided geometric design tools. This paper discusses the use of such a tool, SURFPLAN, to link WRAPFORM and PANELFORM calculations.
Technical Paper

User Friendly Trucks

1997-02-24
970275
Today trucks account for close to half of the US passenger vehicle market. And customers expect more and more from their trucks in terms of comfort and convenience features. The key to developing Best-in-Class comfort and convenience attributes lies in applying Ergonomic principles to the vehicle interior design. Lear Corporation has recently studied 4 truck interiors in the Sport Utility Market Segment focusing on Ergonomic design issues. This paper will review the Sport Utility study results and make interior design recommendations. In this market, functionality is of primary importance to customers. Using random samples of truck owners, we have examined the functionality of door panels, consoles, controls, cupholders, cargo covers and the rear cargo area. Several factors ranging from reach criteria, tactile feel and usability through operating efforts and the motion required to operate the various features were examined.
Technical Paper

The Development of a Sound Quality-Based End-of-Line Inspection System for Powered Seat Adjusters

2001-03-05
2001-01-0040
In recent years, the perceived quality of powered seat adjusters based on their sound during operation has become a primary concern for vehicle and seat manufacturers. Historical noise targets based on overall dB(A) at the occupant's ear have consistently proved inadequate as a measure of the sound quality of a seat adjuster. Significant effort has been devoted to develop alternative sound quality metrics that can truly discriminate between “good” and “bad” seat adjusters. These new metrics have been successfully applied for some years by product development engineers in test labs. However, in the assembly plant the sound quality of the seat adjuster is still assessed subjectively by an operator at the end of the assembly line. The main problem with this approach is not only the lack of consistency and repeatability across large samples of seat tracks, but also the fact that the only feedback provided from the end-of-line to the product development team is of subjective nature.
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

Technical Potential for Thermally Driven Mobile A/C Systems

2001-03-05
2001-01-0297
Aqua-ammonia absorption refrigeration cycle and R-134a Vapor jet-ejector refrigeration cycle for automotive air-conditioning were studied and analyzed. Thermally activated refrigeration cycles would utilize combustion engine exhaust gas or engine coolant to supply heat to the generator. For the absorption system, the thermodynamic cycle was analyzed and pressures, temperatures, concentrations, enthalpies, and mass flow rates at every point were computed based on input parameters simulate practical operating conditions of vehicles. Then, heat addition to the generator, heat removal rates from absorber, condenser, and rectifying unit, and total rejection heat transfer area were all calculated. For the jet-ejector system, the optimum ejector vapor mass ratio based on similar input parameters was found by solving diffuser's conservation equations of continuity, momentum, energy, and flow through primary ejector nozzle simultaneously.
Technical Paper

THE BUICK Air Poise SUSPENSION

1958-01-01
580046
THIS paper describes the springs, control system, and ride of the air suspension system on the 1958 Buick. The system is a semiclosed one, providing a variable-rate suspension, automatic leveling and trim control, and manual lift. The latter feature is a knob below the instrument panel which can be operated when necessary to cope with unusual clearance conditions. The car remains at the same height with loads of up to five passengers and 500 lb in the trunk. The authors describe the road-holding ability of a car with this suspension system as excellent.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Statistical Energy Analysis of Airborne and Structure-Borne Automobile Interior Noise

1997-05-20
971970
This paper describes the application of Statistical Energy Analysis (SEA) and Experimental SEA (ESEA) to calculating the transmission of air-borne and structure-borne noise in a mid-sized sedan. SEA can be applied rapidly in the early stages of vehicle design where the degree of geometric detail is relatively low. It is well suited to the analysis of multiple paths of vibrational energy flow from multiple sources into the passenger compartment at mid to high frequencies. However, the application of SEA is made difficult by the geometry of the vehicle's subsystems and joints. Experience with current unibody vehicles leads to distinct modeling strategies for the various frequency ranges in which airborne or structure-borne noise predominates. The theory and application of ESEA to structure-borne noise is discussed. ESEA yields loss factors and input powers which are combined with an analytical SEA model to yield a single hybrid model.
Technical Paper

Static Electricity in Automotive Interiors

1999-03-01
1999-01-0631
Seats and carpets were evaluated for generating static charges on vehicle occupants. Active measures that eliminate or reduce static accumulation, and passive measures that dissipate static charge in a controlled manner were investigated. The active measures include using durable anti-static finishes or conductive filaments in seating fabrics. The passive measures include adopting conductive plastics in a steering wheel, seat belt buckle release button, or door opening handle. The effectiveness of these measures was tested in a low humidity environment.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Technical Paper

Reliability and Maintainability of Machinery and Equipment for Effective Maintenance

1993-03-01
930569
Typically, “Reliability and Maintainability (R&M)” is perceived as a tool for products alone. Putting emphasis on reliability only at the cost of maintainability is another archetype. Inclusion of both reliability and maintainability (R&M) in all the phases of the machinery and equipment (M&E) life cycle is required in order to be world competitive in manufacturing. R&M is mainly a design function and it should be a part of any design review. Inclusion of the R&M concept early in the life cycle of M&E is key to cost effective and competitive manufacturing. Neither responsive manufacturing nor preventive maintenance can raise it above the level of inherent R&M.
Technical Paper

Preliminary Vehicle Structural Design For Comparison With Quantitative Criteria

1975-02-01
750136
To demonstrate that quantitative design criteria combined with computer analysis methods can facilitate the structural design of an automotive vehicle, two examples of computer aided preliminary design are given. The examples demonstrate analytical techniques applied at two different stages in the design process for a compact size (non-production) automobile. In the first example, analysis is applied to ensure that the front-end structure of the project vehicle is designed to withstand anticipated in-service loads. In the second example, structural dynamic analysis of the total vehicle system is performed to determine vibration response quantities in the passenger compartment. These quantities are compared with whole-body vibration criteria to assess passenger ride quality.
Technical Paper

Predictive Engineering for Instrument-Panel Application Development

1999-03-01
1999-01-0695
With parts consolidation and increasing systems performance requirements, instrument panel systems have become increasingly complex. For these systems, the use of predictive engineering tools can often reduce development time and cost. This paper outlines the use of such tools to support the design and development of an instrument panel (IP) system. Full-scale test results (NVH, head impact, etc.) of this recently introduced IP system were compared with predicted values. Additionally, results from moldfilling analysis and manufacturing simulation are also provided.
Technical Paper

Plasma Jet Ignition of Lean Mixtures

1975-02-01
750349
The development of a plasma jet ignition system is described on a 4-cyl, 140 in3 engine. Performance was evaluated on the basis of combustion flame photographs in a single-cylinder engine at 20/1 A/F dynamometer tests on a modified 4-cyl engine, and cold start emissions, fuel economy, and drivability in a vehicle at 19/1 air fuel ratio. In addition to adjustable engine variables such as air-fuel ratio and spark advance, system electrical and mechanical parameters were varied to improve combustion of lean mixtures. As examples, the air-fuel ratio range was 16-22/1, secondary ignition current was varied from 40 to 6000 mA, and plasma jet cavity and electrode geometry were optimized. It is shown that the plasma jet produces on ignition source which penetrates the mixture ahead of the initial flame front and reduces oxides of nitrogen emission, in comparison to a conventional production combustion chamber.
Technical Paper

OneStep™ Liftgate

1998-02-23
981008
Lear Corporation has developed a new OneStep™ Liftgate trim module. The panel consists of all mechanical components and a trim cover assembled into one module. This structural liftgate uses the trim substrate and a “beam” as the common attachment point for all liftgate hardware. The assembly includes all of the liftgate components mounted to the back of the interior trim panel.
Technical Paper

Noise Absorption of Automotive Seats

1998-02-01
980659
Seat covers made from textiles, leather and vinyl were evaluated for noise absorption. The textiles included woven velours, pile knits and flat wovens. The noise absorption of the covers and the corresponding seat assemblies was tested by the reverberation room method per ASTM C423. The effect of different foams was also tested. For the leather and vinyl covers, the effect of perforation was evaluated. Test results showed distinctive differences between textiles and leather/vinyl with cloth seats having superior noise absorption. Even among the textiles, there are significant differences. Core foam densities affect the characteristics as well. For pile fabrics (woven velours and pile knits), the size of the pile fiber does not affect the acoustic characteristics of the seat. Also, no significant difference was observed between a bonded seat and a conventional (cut and sew) seat.
Technical Paper

Ncap-Field Relevance of the Metrics

2001-06-04
2001-06-0170
By design, frontal New Car Assessment Program (NCAP) tests focus on a narrow portion of the spectrum of field crash events. A simple, high level parsing of towaway crashes from NHTSA's National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) files shows that only a small fraction of occupants (but a somewhat larger portion of their harm as measured by ISS) find themselves in crash circumstances remotely similar to NCAP crash conditions. Looking only at seat location, area of damage, direction of force, distribution of damage, and estimated delta-V filters significantly restricts the relevance of NCAP even before critical factors like belt use and vehicle crash partner are considered. Given the limited scope of frontal NCAP it should not be surprising that it has limited usefulness in discriminating among various vehicles' overall performance in the field.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
X