Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

Wing-Diffuser Interaction on a Sports Car

2011-04-12
2011-01-1433
Amongst the aerodynamic devices often found on race cars, the diffuser is one of the most important items. The diffuser can work both to reduce drag and also to increase downforce. It has been shown in previously published studies, that the efficiency of the diffuser is a function of the diffuser angle, ground clearance and most importantly, the base pressure. The base pressure of a car is defined by the shape of the car and in particular the shape at the rear end, including the rear wheels. Furthermore, on most race cars, a wing is mounted at the rear end. Since the rear wheels and wing will influence the base pressure it is believed that, for a modern race car, there could be a strong interaction between these items and the diffuser. This work aims to systematically study the interaction between the rear wheels and wing; and the diffuser of a contemporary, sports car type, race vehicle.
Technical Paper

Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

2024-04-09
2024-01-2544
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred.
Technical Paper

Water Injection System Application in a Mild Hybrid Powertrain

2020-04-14
2020-01-0798
The potential of 48V Mild Hybrid is promising in meeting the present and future CO2 legislations. There are various system layouts for 48V hybrid system including P0, P1, P2. In this paper, P2 architecture is used to investigate the effects of water injection benefits in a mild hybrid system. Electrification of the conventional powertrain uses the benefits of an electric drive in the low load-low speed region where the conventional SI engine is least efficient and as the load demand increases the IC Engine is used in its more efficient operating region. Engine downsizing and forced induction trend is popular in the hybrid system architecture. However, the engine efficiency is limited by combustion knocking at higher loads thus ignition retard is used to avoid knocking and fuel enrichment becomes must to operate the engine at MBT (Maximum Brake Torque) timing; in turn neutralizing the benefits of fuel savings by electrification.
Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
Technical Paper

Wake and Unsteady Surface-Pressure Measurements on an SUV with Rear-End Extensions

2015-04-14
2015-01-1545
Previous research on both small-scale and full-scale vehicles shows that base extensions are an effective method to increase the base pressure, enhancing pressure recovery and reducing the wake size. These extensions decrease drag at zero yaw, but show an even larger improvement at small yaw angles. In this paper, rear extensions are investigated on an SUV in the Volvo Cars Aerodynamic Wind Tunnel with focus on the wake flow and on the unsteady behavior of the surface pressures near the base perimeter. To increase the effect of the extensions on the wake flow, the investigated configurations have a closed upper- and lower grille (closed-cooling) and the underbody has been smoothed with additional panels. This paper aims to analyze differences in flow characteristics on the wake of an SUV at 0° and 2.5° yaw, caused by different sets of extensions attached to the base perimeter. Extensions with several lengths are investigated with and without a kick.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Technical Paper

Visualization of EGR Influence on Diesel Combustion With Long Ignition Delay in a Heavy-duty Engine

2004-10-25
2004-01-2947
The effects of EGR on diesel combustion were visually examined in a single-cylinder heavy duty research engine with a low compression ratio, low swirl, a CR fuel injection system and an eight-orifice nozzle. Optical access was primarily obtained through the cylinder head. The effects of EGR were found to be significant. NOx emissions were reduced from over 500 ppm at 0% EGR to 5 ppm at 55% EGR. At higher levels of EGR (approximately 35% or more) there was a loss in efficiency. Constant fuel masses were injected. Results from the optical measurements and global emission data were compared in order to obtain a better understanding of the spray behaviour and mixing process. Optical measurements provide fundamental insights by visualizing air motion and combustion behaviour. The NOx reductions observed might be explained by reductions in oxygen concentration associated with the increases in EGR.
Technical Paper

Vehicle Dynamics, Stability and Control

2014-04-01
2014-01-0134
In the last years the number of electronic controllers of vehicle dynamics applied to chassis components has increased dramatically. They use lookup table of the primary order vehicle global parameters as yaw rate, lateral acceleration, steering angle, car velocity, that define the ideal behavior of the vehicle. They are usually based on PID controllers which compare the actual behavior of every measured real vehicle data to the desired behavior, from look up table. The controller attempts to keep the measured quantities the same as the tabled quantities by using ESP, TC (brakes and throttle), CDC (control shocks absorbers), EDIFF(active differential) and 4WS (rear wheels active toe). The performances of these controls are good but not perfect. The improvement can be achieved by replacement of the lookup tables with a fast vehicle model running in parallel to the real vehicle.
Technical Paper

Variation of Vehicle NVH Properties due to Component Eigenfrequency Shifting - Basic Limits of Predictability

1995-05-01
951302
Many papers have been published on variation in noise and vibration as well as transfer function characteristics between individual vehicles with nominally identical design [1], [2] and [3]. However, prediction of Noise Vibration and Harshness (NVH) properties is mostly based on detailed, deterministic modelling with FE- and BE-methods. Time and computer resources for creation and experimental updating of these models need to be optimised with respect to achievable prediction accuracy, and in this context statistical, energy flow based methods (SEA, EFA etc.) should be considered as an efficient alternative for medium and high frequency NVH prediction. A basic study of variability for transfer function of multimodal systems, using ideal acoustic and structural components with parameters corresponding to vehicle body plates and cavities is performed. Well known theory on variability, originally developed for room acoustics, is demonstrated to apply also for simple plates.
Technical Paper

Variable Valve Actuated Controlled Auto-Ignition: Speed Load Maps and Strategic Regimes of Operation

2002-03-04
2002-01-0422
This paper outlines a vision of future engine requirements and operating strategies to reduce fuel consumption and engine out emissions. It discusses in detail the valve operating strategies used to achieve throttleless spark ignition (SI) load control and two methods of controlled Auto Ignition (AI). Emission and fuel consumption speed load maps are shown and differences between SI and AI maps are discussed. Many fully variable valve-timing strategies are proposed and conclusions are reached that clearly indicate significant improvements in IC engine performance are still achievable.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

Using Multi-Rate Filter Banks to Detect Internal Combustion Engine Knock

1997-05-01
971670
The wavelet transform is used in the analysis of the cylinder pressure trace and the ionic current trace of a knocking, single-cylinder, spark ignition engine. Using the wavelet transform offers a significant reduction of mathematical operations when compared with traditional filtering techniques based on the Fourier transform. It is shown that conventional knock analysis in terms of average energy in the time domain (AETD), corresponding to the signal's energy content, and maximum amplitude in the time domain (MATD), corresponding to the maximum amplitude of the bandpass filtered signal, can be applied to both the reconstructed filtered cylinder pressure and the wavelet coefficients. The use of the filter coefficients makes possible a significant additional reduction in calculation effort in comparison with filters based on the windowed Fourier transform.
Technical Paper

Using Ion-current Sensing to Interpret Gasoline HCCI Combustion Processes

2006-04-03
2006-01-0024
Homogeneous charge compression ignition (HCCI), combustion has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions, but experiences problems with cold start, running at idle and producing high power density. A solution to these is to operate the engine in a ‘hybrid mode’, where the engine operates in spark ignition mode at cold start, idle and high loads and HCCI mode elsewhere during the drive cycle, demanding a seamless transition between the two modes of combustion through spark assisted controlled auto ignition. Moreover; HCCI requires considerable control to maintain consistent start of combustion and heat release rate, which has thus far limited HCCI's practical application. In order to provide a suitable control method, a feedback signal is required.
Technical Paper

Use of Repeated Crash-Tests to Determine Local Longitudinal and Shear Stiffness of the Vehicle Front with Crush

1999-03-01
1999-01-0637
Crash-test-data on local longitudinal and shear stiffness of the vehicle front is needed to estimate impact severity from car deformation in offset or pole impacts, and to predict vehicle acceleration and compartment intrusion in car-to-car crashes. Repeated full frontal crash-tests were carried out with a load-cell barrier to determine the local longitudinal stiffness with increasing crush. Repeated off-set tests were run to determine shear stiffness. Two single high-speed tests (full frontal and offset) were carried out and compared to the repeated tests to determine the rate sensitivity of the front structure. Four repetitions at 33.4 km/h provided equivalent energy absorption to a single 66.7 km/h test, when rebound was considered. Power-train inertial effects were estimated from highspeed tests with and without power-train. Speed effects averaged 2% per [m/s] for crush up to power-train impact, and post-crash measurements were a reasonable estimate of front-structure stiffness.
Technical Paper

Uncertainty Quantification of Flow Uniformity Measurements in a Slotted Wall Wind Tunnel

2019-04-02
2019-01-0656
The need for a more complete understanding of the flow behavior in aerodynamic wind tunnels has increased as they have become vital tools not only for vehicle development, but also for vehicle certification. One important aspect of the behavior is the empty test section flow, which in a conventional tunnel should be as uniform as possible. In order to assess the uniformity and ensure consistent behavior over time, accurate measurements need to be performed regularly. Furthermore, the uncertainties and errors of the measurements need to be minimized in order to resolve small non-uniformities. In this work, the quantification of the measurement uncertainties from the full measurement chain of the new flow uniformity measurement rig for the Volvo Cars aerodynamic wind tunnel is presented. The simulation based method used to account for flow interference of the probe mount is also discussed.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Technical Paper

ULSAS - Improving Performance Through Light Weight Automotive Suspension Systems: Phase 1 - Benchmarking and Initial Design Concepts

1999-03-01
1999-01-1311
A Consortium of steel producing organizations has been working to reduce the mass of automobiles. An initiative identified as ULSAS (UltraLight Steel Automotive Suspension) is in progress which considers automotive rear suspension systems. The programme has evaluated and established the current status of material and process technology utilization and its application to rear suspension systems. Extensive studies have generated over fifty five design ideas which provide an indication of the potential opportunities for performance improvement that could be realised through the focused application of steel technologies. Work is in progress developing these ideas and quantifying the performance improvements.
Journal Article

Tyre Pattern Features and Their Effects on Passenger Vehicle Drag

2018-04-03
2018-01-0710
In light of the drive for energy efficiency and low CO2 emissions, extensive research is performed to reduce vehicle aerodynamic drag. The wheels are relatively shielded from the main flow compared to the exterior of the passenger car; however, they are typically responsible for around 25% of the overall vehicle drag. This contribution is large as the wheels and tyres protrude into the flow and change the flow structure around the vehicle underbody. Given that the tyre is the first part of the wheel to get in contact with the oncoming flow, its shape and features have a significant impact on the flow pattern that develops. This study aims at identifying the general effects of two main tyre features, the longitudinal rain grooves and lateral pattern grooves, using both Computational Fluid Dynamics (CFD) and wind tunnel tests. This is performed by cutting generic representations of these details into identical slick tyres.
X