Refine Your Search

Topic

Author

Search Results

Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Technical Paper

Turbo-Discharging: Predicted Improvements in Engine Fuel Economy and Performance

2011-04-12
2011-01-0371
The importance of new technologies to improve the performance and fuel economy of internal combustion engines is now widely recognized and is essential to achieve CO₂ emissions targets and energy security. Increased hybridization, combustion improvements, friction reduction and ancillary developments are all playing an important part in achieving these goals. Turbocharging technology is established in the diesel engine field and will become more prominent as gasoline engine downsizing is more widely introduced to achieve significant fuel economy improvements. The work presented here introduces, for the first time, a new technology that applies conventional turbomachinery hardware to depressurize the exhaust system of almost any internal combustion engine by novel routing of the exhaust gases. The exhaust stroke of the piston is exposed to this low pressure leading to reduced or even reversed pumping losses, offering ≻5% increased engine torque and up to 5% reduced fuel consumption.
Technical Paper

Thermal Boundary Layer Modelling in ‘Motored’ Spark Ignition Engines

1996-10-01
961965
A newly developed piece-wise method for calculating the effects of near-wall turbulence on the transport of enthalpy and hence the thermal boundary layer temperature profile in “motored” spark ignition engines has been compared with methods that have previously been employed in the development of expressions for the gas-wall interface heat flux. Near-wall temperature profiles resulting from the inclusion of the respective expressions in a “quasi-dimensional” thermodynamic engine simulation have been compared and in one case show considerable differences throughout the compression and expansion strokes of the “motored” engine cycle. However, the corresponding heat fluxes calculated from the simulated temperature profiles all show good agreement with measured results.
Technical Paper

The Omnivore Wide-range Auto-Ignition Engine: Results to Date using 98RON Unleaded Gasoline and E85 Fuels

2010-04-12
2010-01-0846
Omnivore is a single cylinder spark ignition based research engine conceived to maximize the operating range of auto-ignition on a variety of fossil and renewable fuels. In order to maximize auto-ignition operation, the two-stroke cycle was adopted with two independent mechanisms for control. The charge trapping valve system is incorporated as a means of varying the quantity of trapped residuals whilst a variable compression ratio mechanism is included to give independent control over the end of compression temperature. The inclusion of these two technologies allows the benefits of trapped residual gas to be maximised (to minimize NOx formation) whilst permitting variation of the onset of auto-ignition. 2000rpm and idle are the main focus of concern whilst also observing the influence of injector location. This paper describes the rational behind the engine concept and presents the results achieved at the time of writing using 98ulg and E85 fuels.
Journal Article

The Lotus Range Extender Engine

2010-10-25
2010-01-2208
The paper discusses the concept, specification and performance of a new, dedicated range extender engine for plug-in series hybrid vehicles conceived and designed by Lotus Engineering. This has been undertaken as part of a consortium project called Limo Green, part-funded by the UK government. The Lotus Range Extender engine has been conceived from the outset specifically as an engine for a plug-in series hybrid vehicle, therefore being free of some of the constraints placed on engines which have to mate to conventional, stepped mechanical transmissions. The paper starts by defining the philosophical difference between an engine for range extension and an engine for a full series hybrid vehicle, a distinction which is important with regard to how much power each type must produce. As part of this, the advantages of the sparkignition engine over the diesel are outlined.
Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Technical Paper

The Effects of Outlet Geometry on Automotive Demister Performance

2000-03-06
2000-01-1277
The established method of clearing a misted car windshield or of maintaining a clear view under misting conditions is through the application of an air supply via jet outlets in the instrument panel. The ability of such arrangements to perform adequately is a function of the prevailing environmental conditions, the vehicle speed, the condition of the demist air source and the geometry and arrangement of the jet outlets. This paper presents experimental data obtained in a purpose built environmental chamber designed to accommodate simple rectangular jets impinging on a misted glass surface. The facility consists of three conditioned air sources applied to a test chamber designed to represent the external, internal and demist air flows. Mist conditions on the glass surface are determined using a novel technique employing a CCD camera acquiring grey scale images which are digitally analysed to generate mist detection, grading and clearing contour data.
Technical Paper

The Application of Particle Image Velocimetry in Automotive Aerodynamics.

2010-04-12
2010-01-0120
Particle Image Velocimetry has developed over the last decade into a relatively mature flow-field measurement technique, capable of providing insight into time averaged and instantaneous flows that in the past have not been readily accessible. The application of the method in the measurement and analysis of flows around road vehicles has so far been limited to a relatively small number of specialist applications, but its use is expanding. This paper reviews the modern digital PIV technique placing emphasis on the important considerations required to obtain reliable and accurate data. This includes comments on each aspect of the PIV process, including initial setup and image acquisition, processing, validation and analysis. A number of automotive case studies are presented covering different aspects of the method, including a diffuser exit flow, edge radius optimization, ‘A’ pillar flow and aerial wake flows.
Technical Paper

Simulation of Exhaust Unburned Hydrocarbons from a Spark Ignition Engine, Originating from In-Cylinder Crevices

1996-10-01
961956
In this paper the effect of in-cylinder crevices formed by the piston cylinder clearance, above the first ring, and the spark plug cavity, on the entrapment of unburned fuel air mixture during the late compression, expansion and exhaust phases of a spark ignition engine cycle, have been simulated using the Computational Fluid Dynamic (CFD) code KIVA II. Two methods of fuelling the engine have been considered, the first involving the carburetion of a homogeneous fuel air mixture, and the second an attempt to simulate the effects of manifold injection of fuel droplets into the cylinder. The simulation is operative over the whole four stroke engine cycle, and shows the efflux of trapped hydrocarbon from crevices during the late expansion and exhaust phases of the engine cycle.
Journal Article

Project Omnivore: A Variable Compression Ratio ATAC 2-Stroke Engine for Ultra-Wide-Range HCCI Operation on a Variety of Fuels

2010-04-12
2010-01-1249
The paper describes the principal features of Omnivore, a spark-ignition-based research engine designed to investigate the possibility of true wide-range HCCI operation on a variety of fossil and renewable liquid fuels. The engine project is part-funded jointly by the United Kingdom's Department for the Environment, Food and Rural Affairs (DEFRA) and the Department of the Environment of Northern Ireland (DoENI). The engineering team includes Lotus Engineering, Jaguar Cars, Orbital Corporation and Queen's University Belfast. The research engine so far constructed is of a typical automotive cylinder capacity and operates on an externally-scavenged version of the two-port Day 2-stroke cycle, utilising both a variable charge trapping mechanism to control both trapped charge and residual concentration and a wide-range variable compression ratio (VCR) mechanism in the cylinder head.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Prediction of Acoustic Emissions of Turbocharger Bearings

2020-09-30
2020-01-1504
Turbochargers are progressively used in modern automotive engines to enhance engine performance and reduce energy loss and adverse emissions. Use of turbochargers along with other modern technologies has enabled development of significantly downsized internal combustion engines. However, turbochargers are major sources of acoustic emissions in modern automobiles. Their acoustics has a distinctive signature, originating from fluid-structure interactions. The bearing systems of turbochargers also constitute an important noise source. In this case, the acoustic emissions can mainly be attributed to hydrodynamic pressure fluctuations of the lubricant film. The developed analytical model determines the lubricant pressure distribution in the floating journal bearings used mainly in the modern turbocharges. This allows for an estimation of acoustic emissions.
Technical Paper

Predicting the Onset of End-Gas Autoignition with a Quasi-Dimensional Spark Ignition Engine Model

1997-10-01
972877
A predictive, quasi-dimensional simulation of combustion in a spark ignition engine has been coupled with a chemical kinetic model for the low temperature, pre-flame reactions of hydrocarbon fuel and air mixtures. The simulation is capable of predicting the onset of autoignition without prior knowledge of the cylinder pressure history. Near-wall temperature gradients were computed within the framework of the engine cycle simulation by dividing the region into a number of thin mass slices which were assumed to remain adjacent to the combustion chamber surfaces in both the burned and unburned gas. The influence of the near-wall turbulence on the temperature field was accounted for by means of a boundary layer turbulence model developed by the authors. Fluid motion in the bulk gases has been considered by the inclusion of a turbulence model based on k - ε theory while the flame propagation rate was predicted using a fractal flame model.
Technical Paper

PowerPlant Systems and the Role of CAE - Part 1 Exhaust Systems

1992-02-01
920396
Designers are under increasing pressure to provide powertrain systems which meet tougher market and legislative requirements for:- performance, emissions and economy reliability and durability noise and refinement To meet increasing competition, powertrain products need to be “fast to market and right first time”. This implies the evolution of existing technology, comprising multicylinder reciprocating engines and gear transmissions, drawing on a database of decades of powerplant design experience. It is with this background that CAE has proven engineering value supporting key areas of powertrain engineering to meet these technological challenges in a cost effective and timely manner. This paper follows the analytical engineering of a typical component, the exhaust system. Particular emphasis is given to the manifold and downpipe components which duct gas from the cylinder head to the catalyst.
Technical Paper

Performance of Slotted Metallic Membranes as Particulate Filters

2014-10-13
2014-01-2807
Stringent IC engine PM emission regulation requires development of future filter substrate materials to achieve high filtration efficiency, low filter pressure drop, low cost and highly durable solutions. Monolithic wall flow filters perform well as they achieve high filtration efficiency due to the formation of the PM cake structure while maintaining low substrate face velocities due to the large filtration area. Within the process industry, Micropore™ slotted metallic membrane filters offer both large surface areas and low filter pressure drops while maintaining the durability of metal substrates. The pore structure and pore arrangement can be readily tailored to suit specific applications. This paper characterizes a 300 μm thickness Micropore™ metallic membrane with slots of 10 μm by 400 μm in size in the context of application as an engine exhaust particulate filter. The investigation was based on single layer of Micropore™ slotted metallic membrane with size of 52 mm in diameter.
Technical Paper

Optimum knock sensor location through experimental modal analysis of engine cylinder block

2011-11-08
2011-32-0637
The knock sensor is provided on an engine cylinder block to detect abnormal engine combustion (knocking) and to provide feedback to engine control unit (ECU). The ECU then modifies the engine input and avoids knocking. A commonly used knock sensor is an accelerometer that detects cylinder wall vibration and estimates knocking of the engine. Selecting the location of a knock sensor in many cases involves a challenging trial and error approach that depends upon the measurement of the knock signal at many locations on engine structure. However, a cylinder block exhibits many structural resonances. Thus, a large vibration signal at the surface of cylinder block can be either due to knocking of the engine or due to the resonances of the cylinder block structure because of normal excitation forces. Hence, this conventional method does not always yield reliable results.
Technical Paper

Optical Analysis and Measurement of Crankcase Lubricant Oil Atomisation

2012-04-16
2012-01-0882
Crankcase emissions are a complex mixture of combustion products and, specifically Particulate Matter (PM) from lubricant oil. Crankcase emissions contribute substantially to the particle mass and particle number (PN) emitted from an internal combustion engine. Environmental legislation demands that the combustion and crankcase emissions are either combined to give a total measurement or the crankcase gases are re-circulated back into the engine, both strategies require particle filtration. There is a lack of understanding regarding the physical processes that generate crankcase emissions of lubricant oil, specifically how the bulk lubricant oil is atomised into droplets. In this paper the crankcase of a motored compression ignition engine, has been optically accessed to visualise the lubricant oil distribution. The oil distribution was analysed in detail using high speed laser diagnostics, at engine speeds up to 2000 rpm and oil temperatures of 90°C.
Journal Article

Multi-Plane Airflow Measurements in the Cylinder of a Tumble Based Engine

2014-10-13
2014-01-2705
The tumble flow in modern spark ignition engines is assuming an evermore important role for fuel guiding, air/fuel mixing and the generation of turbulence kinetic energy to enhance the combustion process. This paper describes results obtained with laser Doppler anemometry in multiple vertical planes in the cylinder of a motored, tumble flow engine and looks at the post processed data in terms of tumble ratios and mean and turbulence kinetic energies. The tumble results indicate very different flow fields in parallel planes lying in the main tumble direction, showing the complex nature of the flows in the cylinder. A simple method of integrating the tumble ratios from the different planes is suggested, leading to a tumble ratio more in line with those expected from an integrated method of measuring tumble, albeit these results are crank angle dependent. The tumble in a perpendicular plane shows unexpected asymmetries and values for the tumble.
Technical Paper

Modelling the Exhaust Gas Recirculation Mass Flow Rate in Modern Diesel Engines

2016-04-05
2016-01-0550
The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points.
X