Refine Your Search

Topic

Author

Search Results

Technical Paper

Variability in Center of Gravity Height Measurement

1992-02-01
920050
A round-robin center of gravity height measurement study was conducted to assess current practice in the measurement of the vertical position of the center of gravity (c.g.) of light truck-type vehicles. The study was performed by UMTRI for the Motor Vehicle Manufacturers Association. The laboratories participating in the study were those of Chrysler Corporation, Ford Motor Company, General Motors Corporation, and the National Highway Traffic Safety Administration. The primary objectives of this study were (i) to determine to what extent the differing experimental procedures used by the participating laboratories at the time of the study result in significant differences in the measured vertical position of the center of mass of light truck-type vehicles, and (ii) to gain insight into the physical causes of such differences.
Technical Paper

Unified Backwards Facing and Forwards Facing Simulation of a Hybrid Electric Vehicle using MATLAB Simscape

2015-04-14
2015-01-1215
This paper presents the implementation of a vehicle and powertrain model of the parallel hybrid electric vehicle which can be used for several purposes: as a model for estimating fuel consumption, as a model for estimating performance, and as a control model for the hybrid powertrain optimisation. The model is specified as a multi-domain physical model in MATLAB Simscape, which captures the key electrical, mechanical and thermal energy flows in the vehicles. By applying hand crafted boundary conditions, this model can be simulated either in the forwards or backwards direction, and it can easily be simplified as required to address specific control problems. Modelling in the forwards direction, the driver inputs are specified, and the vehicle response is the model output. In the backwards direction, the vehicle velocity as a function of time is the specified input, and the engine torque, and fuel consumption are the model outputs.
Technical Paper

The Potential for Thermo-Electric Devices in Passenger Vehicle Applications

2010-04-12
2010-01-0833
The promise of thermo-electric (TE) technology in vehicles is a low maintenance solid state device for power generation. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. The potential to make use of an otherwise wasted flow of energy means that the overall system efficiency can be improved substantially. One of the barriers to a successful application of the technology is the device efficiency. The TE properties of even the most advanced materials are still not sufficient for a practical, cost effective device. However the rate of development is such that practical devices are likely to be available within the next fifteen years. In a previous paper [ 1 ], the potential for such a device was shown through an integrated vehicle simulation and TEG model.
Technical Paper

The Optimization of Roof Trailing Edge Geometry of a Simple Square-Back.

2010-04-12
2010-01-0510
A large contribution to the aerodynamic drag of a vehicle is the loss of pressure in the wake region, especially on square-back configurations. Wake pressure recovery can be achieved by a variety of physical shape changes, but with vehicle shapes becoming ever more aerodynamically efficient research into active technologies for flow manipulation is becoming more prominent. The aim of the current paper is to generate an understanding of how an optimized roof trailing edge, in the form of a chamfer, can reduce wake size, increase base pressures and reduce drag. A comprehensive study using PIV (Particle Image Velocimetry), balance measurements and static pressure measurements was performed in order to investigate the flow and wake structure behind a simplified car model. Significant reductions in C d are demonstrated and directly related to the measured base and slant pressures.
Technical Paper

The Influence of Impact Energy and Direction on Thoracic Response

1983-10-17
831606
A test series using unembalmed cadavers was conducted to investigate thoracic response differences in lateral impacts between high energy (rib fractures produced) and low energy (no rib fractures produced) testing and also the response to low energy impacts for different impact directions (frontal, 45°, and lateral). Five of the test subjects were instrumented with a nine-accelerometer package and an eighteen-accelerometer array to measure thoracic response. Seven of the test subjects were instrumented with a triaxial accelerometer on the head and a six-accelerometer array to measure thoracic response. Impact events were performed with either the UMTRI pendulum impact device or the UMTRI pneumatic impact device. The subject was struck with a free-traveling mass (25 or 56 kg) which was fitted with either a 15 cm round or 20 cm square rigid metal surface.
Technical Paper

The Effect of Vehicle Cruising Speed on the Dynamics of Automotive Hypoid Gears

2012-06-13
2012-01-1543
The dynamics of automotive differentials have been studied extensively to improve their efficiency and additionally, in recent years, generated noise and vibration. Various mathematical models have been proposed to describe the contact/impact of gear teeth pairs. However, the influence of vehicular cruising speed on the resisting torque has not been considered in sufficient detail. This can lead to unrealistic predictions with regards to loss of contact of teeth pair, a phenomenon which leads to NVH issues. The current work presents a torsional model of a hypoid gear pair. The resisting torque is a function of the traction force and aerodynamic drag, whilst the vehicle is cruising at nominally constant speed. The pinion input torque is derived through assumed instantaneous equilibrium conditions. In this approach, realistic excitation capturing the vehicle's driving conditions is imposed on the dynamics of the hypoid gear pair.
Technical Paper

Starting and Developing an Engineering Career: The Barriers and Opportunities

2014-04-01
2014-01-0625
There has probably never been such a demand for professionally qualified engineers, and yet both the number and diversity of people entering the profession continue to decline. Worldwide, there are very many initiatives - some generally encouraging interest in the profession, and others targeting specific audiences. The reports speak of local success, but the overall picture remains discouraging. In this paper we focus on the “pipeline” from primary education through to the transition from graduate engineer into an experienced member of engineering staff. We have based the discussion on both the presentations and comments made during a panel discussion held at the 2013 SAE International Congress. The paper is intended as a summary of the points raised during that discussion and, we hope proves to be starting point for further investigation and analysis. Of particular note is the sheer diversity of initiatives, and the pressing need for role models and mentoring.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

2007-06-12
2007-01-2482
Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
Technical Paper

Simple Predictors of the Performance of A-trains

1993-11-01
932995
Figures of merit describing the performance qualities of multiple-trailer vehicle combinations (for example, rearward amplification) are usually determined from either full-scale vehicle testing or computer simulation analysis. Either method is expensive and time consuming, and restricted in practice to organizations with specialized equipment and engineering skills. One goal of a recent study, conducted by the University of Michigan Transportation Research Institute and sponsored by the Federal Highway Administration, was to use basic vehicle properties to develop simple formulations for estimating the performance qualities of multiple-trailer vehicle combinations. Several hundred computer simulation runs were made using UMTRI's Yaw/Roll program. Five common double-trailer vehicle configurations (defined by trailer lengths and axle configurations) were studied. Each of the five vehicles was subject to fifteen parameter variations.
Technical Paper

Seated Posture of Vehicle Occupants

1983-10-17
831617
This paper describes the methodology and results from a project involving development of anthropometrically based design specifications for a family of advanced adult anthropomorphic dummies. Selection of family members and anthropometric criteria for subject sample selection were based on expected applications of the devices and on an analysis of U.S. population survey data. This resulted in collection of data for dummy sizes including a small female, a mid-sized male, and a large male. The three phases of data collection included: 1. in-vehicle measurements to determine seat track position and seating posture preferred by the subjects for use in development of laboratory seat bucks; 2. measurement of subject/seat interface contours for fabrication of an average hard seat surface for use in the buck; and 3. measurement of standard anthropometry, seated anthropometry (in the buck), and three-dimensional surface landmark coordinates using standard and photogrammetric techniques.
Technical Paper

Roll-Stability Performance of Heavy-Vehicle Suspensions

1992-11-01
922426
The handling-performance capability of most large commercial vehicles operating on US highways is generally established by the limits of roll stability. Especially for heavy trucks, suspension properties play an important role in establishing the basic roll stability of the vehicle. For all highway vehicles, the limit of static roll stability is established first by the ratio of half-track width to center-of-gravity height, and then by the compliant responses of the vehicle, which lead to outward motion of the center of gravity in a turn. Three suspension properties, roll stiffness, roll-center height, and lateral stiffness, influence this motion significantly. This paper discusses the basic mechanisms of static roll stability and highlights the role of suspension properties in establishing the roll-stability limit. Facilities and procedures for measuring key suspension properties are described, and data from the measurement of ninty-four heavy-vehicle suspensions are presented.
Technical Paper

Repeatability of the Tilt-Table Test Method

1993-03-01
930832
Tilt-table testing is one means of quantifying the static roll stability of highway vehicles. By this technique, a test vehicle is subjected to a physical situation analogous to that experienced in a steady state turn. Although the analogy is not perfect, the simplicity and fidelity of the method make it an attractive means for estimating static rollover threshold. The NHTSA has suggested the tilt-table method as one means of regulating the roll stability properties of light trucks and utility vehicles. One consideration in evaluating the suitability of any test method for regulatory use is repeatability, both within and among testing facilities. As a first step toward evaluating the repeatability of the tilt-table method, an experimental study examining the sensitivity of tilt-table test results to variables associated with methodology and facility was conducted by UMTRI for the Motor Vehicle Manufacturers Association. This paper reports some of the findings of that study.
Technical Paper

Practical Aspects of Prototyping Instrument Clusters

1996-02-01
960532
This paper describes an ongoing effort to develop computer-simulated instrumentation for the UMTRI Driver Interface Research Simulator. The speedometer, tachometer, engine and fuel gauges, along with warning lights are back projected onto a screen in front of the driver. The image is generated by a Macintosh running LabVIEW. Simulated instrumentation (instead of a production cluster) was provided so that new display designs can be rapidly generated and tested. This paper addresses the requirements for prototyping software, the advantages and disadvantages of the packages available, and the UMTRI implementation of the software, and its incorporation into the driving simulator.
Technical Paper

Parking Crashes and Parking Assistance System Design: Evidence from Crash Databases, the Literature, and Insurance Agent Interviews

2006-04-03
2006-01-1685
This paper (1) summarizes previous human factors/safety research on parking (8 studies, mostly over 20 years old), (2) provides statistics for 10,400 parking-related crashes in Michigan from 2000-2002, and (3) summarizes interviews with 6 insurance agents concerning parking crashes. These sources indicate: 1 About 1/2 to 3/4 of parking crashes involve backing, often into another moving vehicle while emerging from a parking stall. 2 Eight-and-a-half foot-wide stalls had higher crash rates than wider stalls. 3 Most parallel parking crashes occur on major streets, not minor streets. 4 Lighting and driver impairment were minor factors in parking crashes.
Technical Paper

On Predicting Automotive Clutch Torsional Vibrations

2020-09-30
2020-01-1508
Automotive clutches are prone to rigid body torsional vibrations during engagement, a phenomenon referred to as take-up judder. This is also accompanied by fore and aft vehicle motions. Aside from driver behaviour in sudden release of clutch pedal (resulting in loss of clamp load), and type and state of friction lining material, the interfacial slip speed and contact temperature can significantly affect the propensity of clutch to judder. The ability to accurately predict the judder phenomenon relies significantly on the determination of operational frictional characteristics of the clutch lining material. This is dependent upon contact pressure, temperature and interfacial slip speed. The current study investigates the ability to predict clutch judder vibration with the degree of complexity of the torsional dynamics model. For this purpose, the results from a four and nine degrees of freedom dynamics models are compared and discussed.
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

2015-04-14
2015-01-0411
Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

Modeling Population Distributions of Subjective Ratings

2001-06-26
2001-01-2122
Most human figure models used in ergonomic analyses present postural comfort ratings based on joint angles, and present a single comfort score for the whole body or on a joint-by-joint basis. The source data for these ratings is generally derived from laboratory studies that link posture to ratings. Lacking in many of these models is a thorough treatment of the distribution of ratings for the population of users. Information about ratings distributions is necessary to make cost-effective tradeoffs when design changes affect subjective responses. This paper presents experimental and analytic methods used to develop distribution models for incorporating subjective rating data in ergonomic assessments.
Technical Paper

Modeling Assumptions for Realistic Multibody Simulations of the Yaw and Roll Behavior of Heavy Trucks

1996-02-01
960173
This paper summarizes how modem computer simulation methods have been used to develop a “fleet” of heavy truck simulation programs called TruckSim Kinematical and dynamical modeling assumptions appropriate for simulating the general three-dimensional behavior of heavy trucks are described to the extent needed to construct such a model in a multibody program such as the AUTOS1M symbolic code generator Alternative kinematical assumptions were tested and compared to determine their influence on the simulation efficiency and accuracy As part of the validation, simulation results for the new programs were compared with results obtained with an older program that was developed by hand
Technical Paper

Methods for Laboratory Investigation of Airbag-Induced Thermal Skin Burns

1999-03-01
1999-01-1064
Two new techniques for investigating the thermal skin-burn potential of airbags are presented. A reduced-volume airbag test procedure has been developed to obtain airbag pressures that are representative of a dynamic ridedown event during a static deployment. Temperature and heat flux measurements made with this procedure can be used to predict airbag thermal burn potential. Measurements from the reduced-volume procedure are complemented by data obtained using two gas-jet simulators, called heatguns. Gas is vented in controlled bursts from a large, heated, pressurized tank of gas onto a target surface. Heat flux measurements on the target surface have been used to develop quantitative models of the relationships between gas jet characteristics and burn potential.
X