Refine Your Search

Topic

Author

Search Results

Technical Paper

A Bifurcation Analysis of an Open Loop Internal Combustion Engine

2019-04-02
2019-01-0194
The process of engine mapping in the automotive industry identifies steady-state engine responses by running an engine at a given operating point (speed and load) until its output has settled. While the time simulating this process with a computational model for one set of parameters is relatively short, the cumulative time to map all possible combinations becomes computationally inefficient. This work presents an alternative method for mapping out the steady-state response of an engine in simulation by applying bifurcation theory. The bifurcation approach used in this work allows the engine’s steady-state response to be traced through the model’s state-parameter space under the simultaneous variation of one or more model parameters. To demonstrate this approach, a bifurcation analysis of a simplified nonlinear engine model is presented.
Technical Paper

A Direct Comparison between Numerical and Experimental Results for Airborne Noise Levels in Automotive Transmission Rattle

2014-04-01
2014-01-1756
In this paper, a direct correlation between transmission gear rattle experiments and numerical models is presented, particularly focusing on the noise levels (dB) measured from a single gear pair test rig. The rig is placed in a semi-anechoic chamber environment to aid the noise measurements and instrumented with laser vibrometers, accelerometers and free field microphones. The input torsional velocity is provided by an electric motor, which is controlled by a signal generator, aiming to introduce an alternating component onto the otherwise nominal speed; thus, emulating the engine orders found in an internal combustion engine. These harmonic irregularities are conceived to be the triggering factor for gear rattle to occur. Hence, the rig is capable of running under rattling and non-rattling conditions. The numerical model used accounts for the gear pair's torsional dynamics, lubricated impacts between meshing teeth and bearing friction.
Journal Article

A Modal-Based Derivation of Transient Pressure Distribution Along the Tyre-Road Contact

2009-04-20
2009-01-0457
The two-dimensional, frictional tyre-road contact interaction is investigated. A transient contact algorithm is developed, consisting of an analytical belt model, a non linear sidewall structure and a discretized viscoelastic tread foundation. The relationship between the magnitude/shape of the predicted two-dimensional pressure distribution and the corresponding belt deformation is identified. The effect of vertical load and the role of sidewall non linearity are highlighted. The modal expansion/reduction method is proposed for the increase of the computational efficiency and the effect of the degree of reduction on the simulation accuracy is presented. The qualitative results are physically explained through the participation of certain modes in the equilibrium solution, offering directions for the application of the modal reduction method in shear force oriented tyre models.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Technical Paper

Aerodynamic Drag of a Compact SUV as Measured On-Road and in the Wind Tunnel

2002-03-04
2002-01-0529
Growing concerns about the environmental impact of road vehicles will lead to a reduction in the aerodynamic drag for all passenger cars. This includes Sport Utility Vehicles (SUVs) and light trucks which have relatively high drag coefficients and large frontal area. The wind tunnel remains the tool of choice for the vehicle aerodynamicist, but it is important that the benefits obtained in the wind tunnel reflect improvements to the vehicle on the road. Coastdown measurements obtained using a Land Rover Freelander, in various configurations, have been made to determine aerodynamic drag and these have been compared with wind tunnel data for the same vehicle. Repeatability of the coastdown data, the effects of drag variation near to zero yaw and asymmetry in the drag-yaw data on the results from coastdown testing are assessed. Alternative blockage corrections for the wind tunnel measurements are examined.
Technical Paper

An Optical Analysis of a DISI Engine Cold Start-Up Strategy

2015-09-01
2015-01-1877
Particulate number (PN) standards in the current ‘Euro 6’ European emissions standards pose a challenge for engine designers and calibrators during the warm-up phases of cold direct injection spark ignition (DISI) engines. To achieve catalyst light-off in the shortest time, engine strategies are often employed which inherently use more fuel to attain higher exhaust temperatures. This can lead to the generation of locally fuel-rich regions within the combustion chamber and the emission of particulates. This investigation analyses the combustion structures during the transient start-up phase of an optical DISI engine. High-speed, colour 9 kHz imaging was used to investigate five important operating points of an engine start-up strategy whilst simultaneously recording in-cylinder pressure.
Technical Paper

Analysis of SI Combustion Diagnostics Methods Using Ion-Current Sensing Techniques

2006-04-03
2006-01-1345
Closed-loop electronic control is a proven and efficient way to optimize spark ignition engine performance and to control pollutant emissions. In-cylinder pressure sensors provide accurate information on the quality of combustion. The conductivity of combustion flames can alternatively be used as a measure of combustion quality through ion-current measurements. In this paper, combustion diagnostics through ion-current sensing are studied. A single cylinder research engine was used to investigate the effects of misfire, ignition timing, air to fuel ratio, compression ratio, speed and load on the ion-current signal. The ion-current signal was obtained via one, or both, of two additional, remote in-cylinder ion sensors (rather than by via the firing spark plug, as is usually the case). The ion-current signals obtained from a single remote sensor, and then the two remote sensors are compared.
Technical Paper

Analytical Evaluation of Fitted Piston Compression Ring: Modal Behaviour and Frictional Assessment

2011-05-17
2011-01-1535
Piston compression rings are thin, incomplete circular structures which are subject to complex motions during a typical 4-stroke internal combustion engine cycle. Ring dynamics comprises its inertial motion relative to the piston, within the confine of its seating groove. There are also elastodynamic modes, such as the ring in-plane motions. A number of modes can be excited, dependent on the net applied force. The latter includes the ring tension and cylinder pressure loading, both of which act outwards on the ring and conform it to the cylinder bore. There is also the radial inward force as the result of ring-bore conjunctional pressure (i.e. contact force). Under transient conditions, the inward and outward forces do not equilibrate, resulting in the small inertial radial motion of the ring.
Technical Paper

Challenges and Potential of Intra-Cycle Combustion Control for Direct Injection Diesel Engines

2012-04-16
2012-01-1158
The injection timing of a Diesel internal combustion engine typically follows a prescribed sequence depending on the operating condition using open loop control. Due to advances in sensors and digital electronics it is now possible to implement closed loop control based on in cylinder pressure values. Typically this control action is slow, and it may take several cycles or at least one cycle (cycle-to-cycle control). Using high speed sensors, it becomes technically possible to measure pressure deviations and correct them within the same cycle (intra-cycle control). For example the in cylinder pressure after the pilot inject can be measured, and the timing of the main injection can be adjusted in timing and duration to compensate any deviations in pressure from the expected reference value. This level of control can significantly reduce the deviations between cycles and cylinders, and it can also improve the transient behavior of the engine.
Technical Paper

Comparison between Kalman Filter and Robust Filter for Vehicle Handling Dynamics State Estimation

2002-03-04
2002-01-1185
This paper explores design methods for a vehicle handling dynamics state estimator based on a linear vehicle model. The state estimator is needed because there are some states of the vehicle that cannot be measured directly, such as sideslip velocity, and also some which are relatively expensive to measure, such as roll and yaw rates. Information about the vehicle states is essential for vehicle handling stability control and is also valuable in chassis design evaluation. The aim of this study is to compare the performance of a Kalman filter with that of a robust filter, under conditions which would be realistic and viable for a production vehicle. Both filters are thus designed and tested with reference to a higher order source model which incorporates nonlinear saturating tyre force characteristics. Also, both filters rely solely on accelerometer sensors, which are simulated with expected noise characteristics in terms of amplitude and spectra.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Technical Paper

Effect of Compression Ring Elastodynamics Behaviour upon Blowby and Power Loss

2014-04-01
2014-01-1669
The automotive industry is subject to increasing pressure to reduce the CO2 emissions and improve fuel efficiency in internal combustion engines. Improvements may be achieved in a number of ways. The parasitic losses throughout the engine cycle emanate from friction in all engine contact conjunctions in addition to pumping losses. In particular one main contributory conjunction is the piston ring pack assembly. At low engine speeds, the contribution of friction to the total losses within the engine is increased significantly compared with the thermodynamic losses. Additionally, the sealing capability of the ring is crucial in determining the power output of the engine with any loss of sealing contributing to power loss, as well as blowby. Most reported studies on compression ring-cylinder conjunction do not take into account complex ring in-plane and out-of-plane elastodynamics.
Journal Article

Experimental Interpretation of Compression Ignition In-Cylinder Flow Structures

2020-04-14
2020-01-0791
Understanding and predicting in-cylinder flow structures that occur within compression-ignition engines is vital if further optimisation of combustion systems is to be achieved. To enable this prediction, fully validated computational models of the complex turbulent flow-fields generated during the intake and compression process are needed. However, generating, analysing and interpreting experimental data to achieve this validation remains a complex challenge due to the variability that occurs from cycle to cycle. The flow-velocity data gathered in this study, obtained from a single-cylinder CI engine with optical access using high-speed PIV, demonstrates that significantly different structures are generated over different cycles, resulting in the mean flow failing to adequately reflect the typical flow produced in-cylinder.
Technical Paper

Experimental Study of DI Diesel Engine Performance Using Three Different Biodiesel Fuels

2006-04-03
2006-01-0234
Methyl esters derived from vegetable oils by the process of transesterification (commonly referred as ‘biodiesel’), can be used as an alternative fuel in compression ignition engines. In this study, three different vegetable oils (rape, soy and waste oil) were used to produce biodiesel fuels that were then tested in a four cylinder direct injection engine, typically used in small diesel genset applications. Engine performance and emissions were recorded at five load conditions and at two different speeds. This paper presents the results obtained for measurements of NOx and smoke opacity at the different speed and load conditions for the three biodiesels, and their blends (5 and 50% v/v) with mineral diesel. A simple combustion analysis was also performed where ignition delay, position and magnitude of peak cylinder pressure and heat release rate were examined to asses how the variation of chemical structure and blend percentage affects engine performance.
Journal Article

Experimental Study on the Burning Rate of Methane and PRF95 Dual Fuels

2016-04-05
2016-01-0804
Natural gas as an alternative fuel offers the potential of clean combustion and emits relatively low CO2 emissions. The main constitute of natural gas is methane. Historically, the slow burning speed of methane has been a major concern for automotive applications. Literature on experimental methane-gasoline Dual Fuel (DF) studies on research engines showed that the DF strategy is improving methane combustion, leading to an enhanced initial establishment of burning speed even compared to that of gasoline. The mechanism of such an effect remains unclear. In the present study, pure methane (representing natural gas) and PRF95 (representing gasoline) were supplied to a constant volume combustion vessel to produce a DF air mixture. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Experiments have been conducted at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5 and 10 bar and a temperature of 373K.
Technical Paper

Explicit Model Predictive Control of the Diesel Engine Fuel Path

2012-04-16
2012-01-0893
For diesel engines, fuel path control plays a key role in achieving optimal emissions and fuel economy performance. There are several fuel path parameters that strongly affect the engine performance by changing the combustion process, by modifying for example, start of injection and fuel rail pressure. This is a multi-input multi-output problem. Linear Model Predictive Control (MPC) is a good approach for such a system with optimal solution. However, fuel path has fast dynamics. On-line optimisation MPC is not the good choice to cope with such fast dynamics. Explicit MPC uses off-line optimisation, therefore, it can be used to control the system with fast dynamics.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Technical Paper

Ion Current Signal Interpretation via Artificial Neural Networks for Gasoline HCCI Control

2006-04-03
2006-01-1088
The control of Homogeneous Charge Compression Ignition (HCCI) (also known as Controlled Auto Ignition (CAI)) has been a major research topic recently, since this type of combustion has the potential to be highly efficient and to produce low NOx and particulate matter emissions. Ion current has proven itself as a closed loop control feedback for SI engines. Based on previous work by the authors, ion current was acquired through HCCI operation too, with promising results. However, for best utilization of this feedback signal, advanced interpretation techniques such as artificial neural networks can be used. In this paper the use of these advanced techniques on experimental data is explored and discussed. The experiments are performed on a single cylinder cam-less (equipped with a Fully Variable Valve Timing (FVVT) system) research engine fueled with commercially available gasoline (95 ON).
X