Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Efficiency and Durability Predictions of High Performance Racing Transmissions

2016-06-15
2016-01-1852
Efficiency and durability are key areas of research and development in modern racing drivetrains. Stringent regulations necessitate the need for components capable of operating under highly loaded conditions whilst being efficient and reliable. Downsizing, increasing the power-to-weight ratio and modification of gear teeth geometry to reduce friction are some of the actions undertaken to achieve these objectives. These approaches can however result in reduced structural integrity and component durability. Achieving a balance between system reliability and optimal efficiency requires detailed integrated multidisciplinary analyses, with the consideration of system dynamics, contact mechanics/tribology and stress analysis/structural integrity. This paper presents an analytical model to predict quasi-static contact power losses in lubricated spur gear sets operating under the Elastohydrodynamic regime of lubrication.
Technical Paper

Analytical Evaluation of Fitted Piston Compression Ring: Modal Behaviour and Frictional Assessment

2011-05-17
2011-01-1535
Piston compression rings are thin, incomplete circular structures which are subject to complex motions during a typical 4-stroke internal combustion engine cycle. Ring dynamics comprises its inertial motion relative to the piston, within the confine of its seating groove. There are also elastodynamic modes, such as the ring in-plane motions. A number of modes can be excited, dependent on the net applied force. The latter includes the ring tension and cylinder pressure loading, both of which act outwards on the ring and conform it to the cylinder bore. There is also the radial inward force as the result of ring-bore conjunctional pressure (i.e. contact force). Under transient conditions, the inward and outward forces do not equilibrate, resulting in the small inertial radial motion of the ring.
X