Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

Using a Statistical Machine Learning Tool for Diesel Engine Air Path Calibration

2014-09-30
2014-01-2391
A full calibration exercise of a diesel engine air path can take months to complete (depending on the number of variables). Model-based calibration approach can speed up the calibration process significantly. This paper discusses the overall calibration process of the air-path of the Cat® C7.1 engine using statistical machine learning tool. The standard Cat® C7.1 engine's twin-stage turbocharger was replaced by a VTG (Variable Turbine Geometry) as part of an evaluation of a novel air system. The changes made to the air-path system required a recalculation of the air path's boost set point and desired EGR set point maps. Statistical learning processes provided a firm basis to model and optimize the air path set point maps and allowed a healthy balance to be struck between the resources required for the exercise and the resulting data quality.
Journal Article

Using a New Driveline Model to Define Research Engine Operating Conditions

2010-04-12
2010-01-0002
Steady state engine dynamometer testing provides the highest level of detail for understanding fundamental engine combustion. It can provide insight into pollutant formation mechanisms and methods for minimizing fuel consumption. However, steady-state dynamometer tests are normally carried out at test conditions far removed from the actual conditions that a vehicle engine encounters. This paper describes the application of a simple powertrain model to define steady-state engine test conditions that are more representative of real-world engine operation. The model uses a backward-facing, modular structure. The model is validated against two powertrain configurations: a conventional powertrain equipped with a continuously variable transmission (CVT) and a parallel hybrid powertrain. Powertrain parameters and performance data for validation for both cases are supplied from the literature. The model is shown to agree well with both sets of published experimental results.
Technical Paper

Using Pneumatic Hybrid Technology to Reduce Fuel Consumption and Eliminate Turbo-Lag

2013-04-08
2013-01-1452
For the vehicles with frequent stop-start operations, fuel consumption can be reduced significantly by implementing stop-start operation. As one way to realize this goal, the pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into air tanks installed on the vehicle. The compressed air can then be reused to drive an air starter to realize a regenerative stop-start function. Furthermore, the pneumatic hybrid can eliminate turbo-lag by injecting compressed air into manifold and a correspondingly larger amount of fuel into the cylinder to build-up full-load torque almost immediately. This paper takes the pneumatic hybrid engine as the research object, focusing on evaluating the improvement of fuel economy of multiple air tanks in different test cycles. Also theoretical analysis the benefits of extra boost on reducing turbo-lag to achieve better performance.
Technical Paper

Using Ion-current Sensing to Interpret Gasoline HCCI Combustion Processes

2006-04-03
2006-01-0024
Homogeneous charge compression ignition (HCCI), combustion has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions, but experiences problems with cold start, running at idle and producing high power density. A solution to these is to operate the engine in a ‘hybrid mode’, where the engine operates in spark ignition mode at cold start, idle and high loads and HCCI mode elsewhere during the drive cycle, demanding a seamless transition between the two modes of combustion through spark assisted controlled auto ignition. Moreover; HCCI requires considerable control to maintain consistent start of combustion and heat release rate, which has thus far limited HCCI's practical application. In order to provide a suitable control method, a feedback signal is required.
Technical Paper

Unified Backwards Facing and Forwards Facing Simulation of a Hybrid Electric Vehicle using MATLAB Simscape

2015-04-14
2015-01-1215
This paper presents the implementation of a vehicle and powertrain model of the parallel hybrid electric vehicle which can be used for several purposes: as a model for estimating fuel consumption, as a model for estimating performance, and as a control model for the hybrid powertrain optimisation. The model is specified as a multi-domain physical model in MATLAB Simscape, which captures the key electrical, mechanical and thermal energy flows in the vehicles. By applying hand crafted boundary conditions, this model can be simulated either in the forwards or backwards direction, and it can easily be simplified as required to address specific control problems. Modelling in the forwards direction, the driver inputs are specified, and the vehicle response is the model output. In the backwards direction, the vehicle velocity as a function of time is the specified input, and the engine torque, and fuel consumption are the model outputs.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Turbogenerator Transient Energy Recovery Model

2023-04-11
2023-01-0208
Significant exhaust enthalpy is wasted in gasoline turbocharged direct injection (GTDI) engines; even at moderate loads the WG (Wastegate) starts to open. This action is required to reduce EBP (Exhaust Back Pressure). Another factor is catalyst protection, placed downstream turbine. Lambda enrichment is used to perform this. However, the conventional turbine has a temperature drop across it when used for energy recovery. Catalyst performance is critical for emissions, therefore the only location for any additional device is downstream of it. This is a challenge for any additional energy recovery, but a smaller turbine is a design requirement, optimised to work at lower operating pressure ratios. A WAVE model of the 2.0L GTDI engine was adapted to include a TG (Turbogenerator) and TBV (Turbine Bypass Valve) with the TG in a mechanical turbocompounding configuration, calibrated with steady state dynamometer data to estimate drive cycle benefit.
Technical Paper

Turbo-Discharging: Predicted Improvements in Engine Fuel Economy and Performance

2011-04-12
2011-01-0371
The importance of new technologies to improve the performance and fuel economy of internal combustion engines is now widely recognized and is essential to achieve CO₂ emissions targets and energy security. Increased hybridization, combustion improvements, friction reduction and ancillary developments are all playing an important part in achieving these goals. Turbocharging technology is established in the diesel engine field and will become more prominent as gasoline engine downsizing is more widely introduced to achieve significant fuel economy improvements. The work presented here introduces, for the first time, a new technology that applies conventional turbomachinery hardware to depressurize the exhaust system of almost any internal combustion engine by novel routing of the exhaust gases. The exhaust stroke of the piston is exposed to this low pressure leading to reduced or even reversed pumping losses, offering ≻5% increased engine torque and up to 5% reduced fuel consumption.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Technical Paper

Towards In-Cylinder Flow Informed Engine Control Strategies Using Linear Stochastic Estimation

2019-04-02
2019-01-0717
Many modern I.C. engines rely on some form of active control of injection, timing and/or ignition timing to help combat tailpipe out emissions, increase the fuel economy and improve engine drivability. However, development of these strategies is often optimised to suit the average cycle at each condition; an assumption that can lead to sub-optimal performance, especially an increase in particulate (PN) emissions as I.C. engine operation, and in-particular its charge motion is subject to cycle-to-cycle variation (CCV). Literature shows that the locations of otherwise repeatable large-scale flow structures may vary by as much 25% of the bore dimension; this could have an impact on fuel break-up and distribution and therefore subsequent combustion performance and emissions.
Technical Paper

Top Fuel Dragster Powertrain Modelling

2008-12-02
2008-01-2958
Here we consider the construction of a model in the matlab/simulink environment that describes the dynamic processes occurring within the driveline of a Top Fuel Dragster. Particular emphasis is placed upon development of the model for aspects of powertrain performance that are unique to operation of a dragster. This includes clutch operation, tyre modelling including squat and growth and vertical load variation. The model predictions are compared to vehicle test data, and although predictions are not accurate clear similarities are seen. Hence a good basis for simulating the dragster has been produced but significant parameter tuning work is still required. The paper considers future enhancements to the model and methods for identifying model parameters, in order to further improve accuracy.
Technical Paper

Thermal Boundary Layer Modelling in ‘Motored’ Spark Ignition Engines

1996-10-01
961965
A newly developed piece-wise method for calculating the effects of near-wall turbulence on the transport of enthalpy and hence the thermal boundary layer temperature profile in “motored” spark ignition engines has been compared with methods that have previously been employed in the development of expressions for the gas-wall interface heat flux. Near-wall temperature profiles resulting from the inclusion of the respective expressions in a “quasi-dimensional” thermodynamic engine simulation have been compared and in one case show considerable differences throughout the compression and expansion strokes of the “motored” engine cycle. However, the corresponding heat fluxes calculated from the simulated temperature profiles all show good agreement with measured results.
Technical Paper

The Value of Component in the Loop Approaches to Exhaust Energy Management in Hybrid Vehicles

2012-04-16
2012-01-1024
Recent work on thermo-electric (TE) systems has highlighted the need for refined heat transfer design as well as the long standing need for improved materials performance. Recent work on heat transfer for TE systems has shown that enhanced heat transfer is needed over and above what would normally be seen in a vehicle exhaust system. In particular a better understanding of flow development and boundary layer behaviour is needed to support new design proposals. In the meantime, recent work in TE materials suggests that with the use of skutterudites significant performance benefits can accrue over existing materials. The current generation of TE materials have non-dimensional thermoelectric figure of merit (ZT) values of around 1. Skutterudites have been demonstrated to have ZT values of about 1.4 and can maintain these values over a wider temperature range than do existing materials through the engineering of the TE device.
Technical Paper

The State of the Art in Selective Catalytic Reduction Control

2014-04-01
2014-01-1533
Selective Catalytic Reduction (SCR) is a leading aftertreatment technology for the removal of nitrogen oxide (NOx) from exhaust gases (DeNOx). It presents an interesting control challenge, especially at high conversion, because both reagents (NOx and ammonia) are toxic, and therefore an excess of either is highly undesirable. Numerous system layouts and control methods have been developed for SCR systems, driven by the need to meet future emission standards. This paper summarizes the current state-of-the-art control methods for the SCR aftertreatment systems, and provides a structured and comprehensive overview of the research on SCR control. The existing control techniques fall into three main categories: traditional SCR control methods, model-based SCR control methods, and advanced SCR control methods. For each category, the basic control technique is defined. Further techniques in the same category are then explained and appreciated for their relative advantages and disadvantages.
Technical Paper

The Role of New Automotive Engineering Masters Programme in the Industry in China

2016-04-05
2016-01-0171
China is the world’s largest automotive producer and has the world’s biggest automobile market. However, in the past decades, the development of China’s automotive industry has depended primarily on the foreign direct investment; domestic automakers have struggled in the lower ranks of car producers. In recent years, China’s automotive industry, supported by government policies, has been improving their Research and Development (R&D) capacity, to compete with their international peers. Against this background, China’s automotive industry requires a large number of R&D professionals who have not only a higher degree but also the applied and practical knowledge and skills of research. For the purpose of meeting the industry’s needs, a new Professional Automotive Engineering Masters Programme was launched in 2009, which aims to deliver the Masters to be the R&D professionals in the future.
Technical Paper

The Potential of Thermoelectric Generator in Parallel Hybrid Vehicle Applications

2017-03-28
2017-01-0189
This paper reports on an investigation into the potential for a thermoelectric generator (TEG) to improve the fuel economy of a mild hybrid vehicle. A simulation model of a parallel hybrid vehicle equipped with a TEG in the exhaust system is presented. This model is made up by three sub-models: a parallel hybrid vehicle model, an exhaust model and a TEG model. The model is based on a quasi-static approach, which runs a fast and simple estimation of the fuel consumption and CO2 emissions. The model is validated against both experimental and published data. Using this model, the annual fuel saving, CO2 reduction and net present value (NPV) of the TEG’s life time fuel saving are all investigated. The model is also used as a flexible tool for analysis of the sensitivity of vehicle fuel consumption to the TEG design parameters. The analysis results give an effective basis for optimization of the TEG design.
Technical Paper

The Potential of Fuel Metering Control for Optimising Unburned Hydrocarbon Emissions in Diesel Low Temperature Combustion

2013-04-08
2013-01-0894
Low temperature combustion (LTC) in diesel engines offers attractive benefits through simultaneous reduction of nitrogen oxides and soot. However, it is known that the in-cylinder conditions typical of LTC operation tend to produce high emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO), reducing combustion efficiency. The present study develops from the hypothesis that this characteristic poor combustion efficiency is due to in-cylinder mixture preparation strategies that are non-optimally matched to the requirements of the LTC combustion mode. In this work, the effects of three key fuel path parameters - injection fuel quantity ratio, dwell and injection timing - on CO and HC emissions were examined using a Central Composite Design (CCD) Design of Experiments (DOE) method.
Technical Paper

The Potential for Thermo-Electric Devices in Passenger Vehicle Applications

2010-04-12
2010-01-0833
The promise of thermo-electric (TE) technology in vehicles is a low maintenance solid state device for power generation. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. The potential to make use of an otherwise wasted flow of energy means that the overall system efficiency can be improved substantially. One of the barriers to a successful application of the technology is the device efficiency. The TE properties of even the most advanced materials are still not sufficient for a practical, cost effective device. However the rate of development is such that practical devices are likely to be available within the next fifteen years. In a previous paper [ 1 ], the potential for such a device was shown through an integrated vehicle simulation and TEG model.
Technical Paper

The Position Control of a Gasoline Engine during Shutdown

2017-03-28
2017-01-1630
Since the first stop-start system introduced in 1983, more and more vehicles have been equipped with this kind of automatic engine control system. Recently, it was found that there is strong correlation between engine resting position and the subsequent engine start time. The utilization of the synchronization time working from a required engine stop position prior the engine start request was shown to reduce start times. Hence the position control of an engine during shutdown becomes more significant. A naturally aspirated engine was modelled using the GT-Suite modelling environment to facilitate the development of position controllers using Simulink ®. The use of respectively the throttle and a belt mounted motor generator to provide a control input was considered. Proportional-Integral-Differential (PID), sliding mode and deadbeat control strategies were each used in this study.
X