Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Comparison of Gasoline Direct Injection Part I - Fuel System Deposits and Vehicle Performance

1999-05-03
1999-01-1498
Four 1998 Mitsubishi Carismas, two equipped with direct injection and two with port fuel injection engines, were tested in 20,100 km intervals to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant on vehicle deposits and emissions, acceleration and driveability performance. The program showed that engine fuel system deposits, including specifically those on intake valves, combustion chambers and injectors are formed in higher amounts in the GDI engine than the PFI engine. The fuel additive used reduced injector deposits and combustion chamber deposits in the GDI, but had no significant effect on intake valve deposits, which are affected by crankcase oil formulation. In GDI vehicles, deposited engines were found to have increased hydrocarbon and carbon monoxide emissions and poorer fuel economy and acceleration, but lower particulate emissions.
Technical Paper

A Comparison of Gasoline Direct Injection and Port Fuel Injection Vehicles: Part II - Lubricant Oil Performance and Engine Wear

1999-05-03
1999-01-1499
Four 1998 Mitsubishi Carismas, two equipped with direct injection (GDI) and two with port fuel injection engines (PFI) were tested in a designed experiment to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant type on engine wear and engine oil performance parameters. Fuel types were represented by an unadditised base fuel meeting EEC year 2000 specifications and the same base fuel plus synthetic deposit control additive packages. Crankcase oils were represented by two types (1) a 5W-30 API SJ/ILSAC GF-2 type engine oil and (2) a 10W-40 API SH/CF ACEA A3/ B3-96 engine oil. The program showed that specific selection of oil additive chemistry may reduce formation of intake valve deposits in GDI cars.. In general, G-DI engines produced more soot and more pentane insolubles and were found to be more prone to what appears to be soot induced wear than PFI engines.
Technical Paper

A Comparison of the Effects of Additives on Spark Ignited Combustion in a Laminar Flow System and in an Engine Under Cold-Start Conditions

2002-10-21
2002-01-2834
Experiments have been conducted in a laminar flow system and in a research engine to investigate the effect of additives on the combustion of gasoline-like fuels. The purpose of the laminar system is to enable rapid screening of additives to determine which, if any, have an enhancing effect on the early stages of combustion, especially under conditions of poor fuel vaporization which exist during cold-start in a spark ignited engine and which make flame propagation difficult to start and sustain. The base fuel used in the laminar and engine systems was a 9 component mixture formulated to simulate those components of gasoline expected to be present in the vapor phase in the intake system of an engine under cold-start conditions. In the laminar system, the pre-mixed, pre-vaporized fuel-air mixture is ignited and a time history of the combustion generated, hydroxyl radical chemiluminescence is recorded.
Technical Paper

A Comprehensive Examination of the Effect of Ethanol-Blended Gasoline on Intake Valve Deposits in Spark-Ignited Engines

2007-10-29
2007-01-3995
Ethanol-gasoline blends are widely understood to present certain technical challenges to engine operation. Despite widespread use of fuels ranging from E5 (5% ethanol in gasoline) in some European countries to E10 (10% ethanol) in the United States to E100 (100% ethanol; “alcool”) in Brazil, there are certain subjects which have only anecdotally been examined. This paper examines two such issues: the effect of ethanol on intake valve deposits (IVD) and the impact of fuel additive on filter plugging (a measure of solubility). The effect of ethanol on IVD is studied along two lines of investigation: the effect of E10 in a multi-fuel data set carried out in the BMW 318i used for EPA and CARB certification, and the effect of varying ethanol content from 0% to 85% in gasoline carried out in a modern flex-fuel vehicle.
Technical Paper

A Copper-Lead Bearing Corrosion Test Replacement

1997-05-01
971623
The Cooperative Lubrication Research (CLR) Oil Test Engine, usually called the L-38, has been used for nearly 25 years to evaluate copper-lead journal bearing protection of gasoline rnotoroils under high-temperature, heavy-duty conditions. The test is sensitive to aggressive surface active additives that may encourage bearing corrosion. The L-38 also provides an estimate of oil durability, assessing the resistance of an oil to the accumulation of acidic by-products of combustion that could attack copper-lead bearings. However, the L-38 engine dynamometer test uses a heavily leaded gasoline that is no longer representative of the commercial fuels available in North America, Europe, or Japan. Rather than discard the L-38, this paper describes work to modify the L-38 procedure to run with unleaded gasoline.
Technical Paper

A Method to Assess Grease Temperature Response in CVJ Applications

2005-05-11
2005-01-2177
The constant velocity joint (CVJ) has seen increased usage driven by the growth of front wheel drive vehicles over the last 30 years. The CVJ provides a smooth, dynamic connection between the output of the axle or gearbox and the driving wheels of the vehicle. The seemingly simple device, however, requires specially designed greases to maximize protection of the internal components from distress and provide optimum performance and service life. One measure of potential distress in the CVJ can be related to temperature rise which is a reflection of the friction and wear properties of the grease employed. A test rig was designed and a method created to evaluate the temperature response of different greases used in a CVJ. The test rig was designed to allow a wide range of speeds, torques and shaft angles to be used. The rig uses a unique temperature pickup system to allow for dynamic measurement of the grease temperature in the boot.
Technical Paper

A Statistical Review of Available Data Correlating the BMW and Ford Intake Valve Deposit Tests

1998-05-04
981365
A 100-hour engine dynamometer test for intake valve deposits (IVD) which uses a Ford 2.3L engine was developed by the Coordinating Research Council (CRC). Recently, this test has been approved by the American Society for Testing and Materials (ASTM) as Test Method D 6201-97. Since this test offers improvements in test variability, duration, and cost, it is expected to replace ASTM D 5500-94, a 16,000-km vehicle test run using a BMW 318i, as the key performance test for the Certification of Gasoline Deposit Control Additives by the EPA Final Rule. As a step in the replacement process, a correlation between valve deposit levels for the CRC 2.3L Ford IVD test and ASTM D 5500 BMW IVD test must be determined. This paper provides a statistical review of available data in an attempt to provide such a correlation.
Technical Paper

A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test

2019-04-02
2019-01-0299
Increasingly stringent vehicle emissions legislation is being introduced throughout the world, regulating the allowed levels of particulate matter emitted from vehicle tailpipes. The regulation may prove challenging for gasoline vehicles equipped with modern gasoline direct injection (GDI) technology, owing to their increased levels of particulate matter production. It is expected that gasoline particulate filters (GPFs) will soon be fitted to most vehicles sold in China and Europe, allowing for carbonaceous particulate matter to be effectively captured. However, GPFs will also capture and accumulate non-combustible inorganic ash within them, mainly derived from engine oil. Studies exist to demonstrate the impact of such ash on GPF and vehicle performance, but these commonly make use of accelerated ash loading methods, which themselves introduce significant variation.
Technical Paper

A Study of Axle Fluid Viscosity and Friction Impact on Axle Efficiency

2016-04-05
2016-01-0899
The growing need for improved fuel economy is a global challenge due to continuously tightening environmental regulations targeting lower CO2 emission levels via reduced fuel consumption in vehicles. In order to reach these fuel efficiency targets, it necessitates improvements in vehicle transmission hardware components by applying advanced technologies in design, materials and surface treatments etc., as well as matching lubricant formulations with appropriate additive chemistry. Axle lubricants have a considerable impact on fuel economy. More importantly, they can be tailored to deliver maximum operational efficiency over specific or wide ranges of operating conditions. The proper lubricant technology with well-balanced chemistries can simultaneously realize both fuel economy and hardware protection, which are perceived to have a trade-off relationship.
Technical Paper

A Vegetable Oil Based Tractor Lubricant

1994-09-01
941758
Increased awareness of preserving the environment has motivated the development of a wide variety of environmentally compatible products. Such products include environmentally compatible lubricants. Sale and use of these types of lubricants illustrates diligence by the lubricant manufacturer, original equipment manufacturer (OEM), and the consumer in contributing to a cleaner environment. The use of this type of lubricant could enhance the image of the lubricant manufacturer and vendor as well as the equipment manufacturer who employs such a fluid. To base such a lubricant on a vegetable oil creates a product environmentally friendly by its farming origin and its ability to readily biodegrade if released. No machinery is so uniquely suited to using vegetable oil based lubricants as agricultural equipment. Since this equipment is particularly close to the environment, the lubricant can easily come in contact with the soil, ground water, and crops.
Technical Paper

A real-world fleet test of the effects of engine oil on Low Speed Pre-Ignition occurrence in TGDi engine

2019-12-19
2019-01-2294
In the last decade, numerous studies have been conducted to investigate the mechanism of Low Speed Pre-Ignition (LSPI) in Turbocharged Gasoline Direct Injection (TGDi) engines. According to technical reports, engine oil formulations can significantly influence the occurrence of LSPI particularly when higher levels of calcium-based additives are used, increasing the tendency for LSPI events to occur. While most of the studies conducted to date utilized engine tests, this paper evaluates the effect of engine oil formulations on LSPI under real-world driving conditions, so that not only the oil is naturally aged within an oil change interval, but also the vehicle is aged through total test distance of 160,000 km. Three engine oil formulations were prepared, and each tested in three vehicles leading to an identical fleet totaling nine vehicles, all of which were equipped with the same TGDi engine.
Technical Paper

ATF Nylon Degradation

1997-05-01
971625
Nylon is used as a material in the design of various components of automatic transmissions. Pump rotor guides and thrust washers are among components designed from nylon. Nylon must be compatible with automatic transmission fluid (ATF). An immersion test using nylon strips in various test fluids was developed. The nylon color change was independent of the physical properties (as measured by change of tensile force) of the material. Testing indicated that nylon color change is catalyzed by oxidation effects, and the change in tensile strength is related to thermal degradation. An automatic transmission fluid (ATF) containing calcium sulfonate detergent showed better oxidation resistance and caused less loss of tensile strength in nylon 6 (PA6).
Technical Paper

Advanced Power-Cylinder Tribology Using A Dynamically Loaded Piston Ring on Cylinder Bore Tribometer

2014-10-13
2014-01-2783
It has long been understood that the piston assembly of the internal combustion engine accounts for a significant proportion of total engine friction. Modern engines are required to have better fuel economy without sacrificing durability. The pursuit of better fuel economy drives trends like downsizing, turbocharging and direct injection fuelling systems that increase cylinder pressures and create a more arduous operating environment for the piston ring / cylinder bore tribocouple. The power-cylinder lubricant is therefore put under increased stress as modern engine technology continues to evolve. The conventional approach to investigating fundamental power-cylinder tribology employs bench-tests founded on assumptions which allow for simplification of experimental conditions.
Technical Paper

An Extended 35VQ-25 Vane Pump Test as a Viable Method for Differentiating Anti-Wear Hydraulic Fluid Performance

2002-03-19
2002-01-1403
This paper describes the development of an extended vane pump test procedure utilizing the Eaton® 35VQ-25 vane pump. Evaluation of two commercial Zinc Dithiophosphate containing and two commercial non Zinc (ashless) hydraulic fluids are also described. Results show that extending the test time allows differentiation among fluids which give comparable performance in the standard 50 hour test. System cleanliness, as well as pump weight loss, must be used in the performance assessment.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Anatomy of an L-37 Hypoid Gear Durability Test Ridging Failure

2012-09-10
2012-01-1669
The ASTM D6121 (L-37) is a key hypoid gear lubricant durability test for ASTM D7450-08 (API Category GL-5) and the higher performance level SAE J2360. It is defined as the ‘Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles’. Pass/fail is determined upon completion of the test by rating the pinion and ring gears for several types of surface distress, including wear, rippling, ridging, pitting, spalling and scoring. Passing the L-37 in addition to the other tests required for API Category GL-5 credentials, as well as the more strenuous SAE J2360 certification, requires in-depth formulating knowledge to appropriately balance the additive chemistry. This paper describes the results of ASTM D6121 experiments run for the purposes of better understanding gear oil durability.
Technical Paper

Are the Traditional Methods for Determining Depletion of Total Base Number Providing Adequate Engine Protection?

2007-10-29
2007-01-4001
With the increasing use of modern, EGR-equipped, heavy-duty diesel engines and the use of lower sulfur and alternate fuels, such as biodiesel, lubricants are being exposed to a range of different compositions of acids. To complement the traditional detergent bases, todays lubricants have evolved to include a higher proportion of basic materials from amine-derived sources to aid in oxidation and soot control. This paper explores the impact of the different sources of acids, some of the issues they create and how they can be addressed, exemplified in a prototype CJ-4 lubricant formulation.
Technical Paper

Balancing Extended Oil Drain With Extended Equipment Life

1996-05-01
961110
All automotive gear oils must satisfy a series of standard industry or Original Equipment Manufacturer (OEM) tests. These usually include bench, axle dynamometer, and field tests. However, product development testing must extend beyond satisfying standard test protocols. This is especially true as increased emphasis is placed on extending oil drain intervals and increasing equipment life in the face of greater performance demands through new heavy-duty vehicle designs. End-users ultimately benefit from extended oil drain intervals and increased equipment life. However, the effort to achieve both initiatives will prove successful only through careful development and selection of the proper performance additives and base fluids. Also, a broad focus must be maintained to satisfy all lubricant requirements. These requirements build on a solid base of standard features and include new features that stretch the current envelope of gear oil performance.
Technical Paper

Breaking the Viscosity Paradigm: Formulating Approaches for Optimizing Efficiency and Axle Life - Part II

2006-10-16
2006-01-3272
The popularity of light trucks and sport utility vehicles (SUVs), coupled with growing consumer demand for vehicles with more size, weight and horsepower, has increased the impact of these vehicle classes on the manufacturer's CAFE (Corporate Average Fuel Economy) numbers. Consumers often use light trucks and SUVs in applications such as prolonged towing at highway speeds, resulting in heavy loading and/or high operating temperatures in the axle. These conditions require superior axle lubricant protection, often provided by choosing a higher viscosity fluid (e.g., SAE 75W-140). Traditionally, the choice of these higher viscosity fluids for enhanced durability performance often results in reduced city-highway efficiency. This paper will describe the use of controlled axle dynamometer laboratory testing methods to develop fluids that maximize both fuel efficiency and durability performance across the wide spectrum of the new proposed viscosity classifications.
Technical Paper

Breaking the Viscosity Paradigm: Formulating Approaches for Optimizing Efficiency and Vehicle Life

2005-10-24
2005-01-3860
The popularity of light trucks and sport utility vehicles (SUVs), coupled with growing consumer demand for vehicles with more size, weight and horsepower, has challenged the original equipment manufacturers' (OEM) ability to meet the Corporate Average Fuel Economy (CAFE) specifications due to the increased contribution of these vehicle classes on fleet averages. The need for improved fuel economy is also a global issue due to the relationship of reduced fuel consumption to reduced CO2 emissions. Vehicle manufacturers are challenged to match the proper fluid with the application to provide the required durability protection while maximizing fuel efficiency. Recent new viscosity classifications outlined under SAE J306 aid in more tightly defining options for lubricant choice for a given application. Changes to the SAE J306 viscosity classification define new intermediate viscosity grades, SAE 110 and SAE 190.
X