Refine Your Search

Topic

Author

Search Results

Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

The Use of Life Cycle Assessment with Crankcase Lubricants to Yield Maximum Environmental Benefit – Case Study of Residual Chlorine in Lubricant

2008-10-06
2008-01-2376
Life Cycle Assessment (LCA) is a methodology used to determine quantitatively the environmental impacts of a range of options. The environmental community has used LCA to study all of the impacts of a product over its life cycle. This analysis can help to prevent instances where a greater degree of environmental harm results when changes are made to products based on consideration of impacts in only part of the life cycle. This study applies the methodology to engine lubricants, and in particular chlorine limits in engine lubricant specifications. Concern that chlorine in lubricants might contribute to emissions from vehicle exhausts of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), collectively called PCDD/F, led to the introduction of chlorine limits in lubricant specifications. No direct evidence was available linking chlorine in lubricants to PCDD/F formation, but precautionary principles were used to set lubricant chlorine limits.
Technical Paper

The KA24E Engine Test for ILSAC GF-3 Part 1: Engine Design, Operating Conditions and Wear Mechanisms

1998-10-19
982625
The Nissan KA24E engine test is designated to replace the Ford Sequence VE engine test as the low temperature valve train wear requirement for ILSAC (International Lubricant Standardization and Approval Committee) GF-3. The KA24E (recently designated the Sequence IV A) represents much of the current world-wide material and design technology while retaining the sliding cam/follower contact found in earlier engine designs. The work presented here is the first of two reports. In this first report, the physical and chemical environment the KA24E engine presents a lubricant is characterized and compared to those of the Sequence VE engine. Valve train materials and wear modes are investigated and described. Although chemical analysis of drain oils indicate the KA24E procedure does not degrade the lubricant to the extent seen in the Sequence VE test, valve train wear appears to proceed in a similar manner in both tests.
Journal Article

The Effect of Low Viscosity Oil on the Wear, Friction and Fuel Consumption of a Heavy Duty Truck Engine

2013-04-08
2013-01-0331
This paper describes the results of a series of tests on a heavy-duty truck diesel engine using conventional and low viscosity lubricants. The objectives were to explore the impact of reducing lubricant viscosity on wear, friction and fuel consumption. The radiotracing Thin Layer Activation method was used to make on-line measurements of wear at the cylinder liner, top piston ring, connecting rod small end bush and intake cam lobe. The engine was operated under a wide range of conditions (load, speed and temperature) and with lubricants of several different viscosity grades. Results indicate the relationship between lubricant viscosity and wear at four critical locations. Wear at other locations was assessed by analysis of wear metals and post test inspection. The fuel consumption was then measured on the same engine with the same lubricants. Results indicate the relationship between oil viscosity and fuel consumption under a wide range of operating conditions.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Soot-Related Viscosity Increase - Further Studies Comparing the Mack T-11 Engine Test to Field Performance

2005-10-24
2005-01-3714
SAE 2004-01-3009 reported on work conducted to investigate the correlation between the Mack T-11 laboratory engine tests and vehicle field tests. It concluded that the T-11 test provides an effective screening tool to investigate soot-related viscosity increase, and the severity of the engine test limits provides a substantial margin of safety compared to the field. This follow-up paper continues the studies on the 2003 Mack CV713 granite dump truck equipped with an AI-427 internal EGR engine and introduces experimentation on a 2003 CX613 tractor unit equipped with an AC-460P cooled EGR engine. The paper further assesses the correlation of the field trials to the Mack T-11 engine test and reviews the impact of ultra low sulfur diesel (ULSD) and prototype CJ-4 lubricant formulations in these engines.
Technical Paper

Reducing Deposits in a DISI Engine

2002-10-21
2002-01-2660
Direct injection spark ignition (DISI) engine technology offers tremendous potential advantages in fuel savings and is likely to command a progressively increasing share of the European passenger vehicle market in the future. A concern is its propensity to form deposits on the inlet valve. In extreme cases, these deposits can lead to poor drivability and deteriorating emission performance. This inlet valve deposit build up is a well-known phenomenon in DISI engines since even additised fuel cannot wash over the back of intake valves to keep them clean. Two lubricants and two fuels were tested in a four car matrix. One of the lubricants was a fluid specifically developed by Lubrizol for DISI technology; the other was a baseline oil meeting Ford lubricants requirements and was qualified to ACEA A1/B1/ ILSAC GF2 performance level. Similarly, a baseline fuel was tested against an additised system.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

On-Board Sensor Systems to Diagnose Condition of Diesel Engine Lubricants - Focus on Soot

2004-10-25
2004-01-3010
Soot is a typical byproduct of the diesel fuel combustion process, and a portion of the soot inevitably enters an engine's crankcase. A key functionality of a diesel engine lubricant is to disperse and suspend soot so that larger-particle agglomerations are prevented. The role of soot agglomeration in abrasive engine wear and lubricant viscosity increase is the subject of a continuing investigation; however, what is generally known is that once an engine lubricant loses its ability to control soot and a rapid viscosity increase begins, the lubricant has reached the end of its useful life and should be changed to maximize engine performance and life. This issue of soot related viscosity increase is of such importance that the Mack T-11 engine test was developed as a laboratory tool to evaluate lubricants. The newly proposed Mack EO-N Premium Plus - 03 specification includes a T-11 performance requirement.
Technical Paper

Next Generation Torque Control Fluid Technology, Part III: Using an Improved Break-Away Friction Screen Test to Investigate Fundamental Friction Material-Lubricant Interactions

2010-10-25
2010-01-2231
Wet clutch friction devices are the primary means by which torque is transmitted in many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems, and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3270 - Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Slip Screen Test Development), a testing tool was developed to simulate a limited slip differential break-away event using a Full Scale-Low Velocity Friction Apparatus (FS-LVFA). The purpose of this test was to investigate the fundamental interactions between lubricants and friction materials. The original break-away friction screen test, which used actual vehicle clutch plates and a single friction surface, proved a useful tool in screening new friction modifier technology.
Technical Paper

Mechanical Degradation of Viscosity Modifiers in Heavy Duty Diesel Engine Lubricants in Field Service

2003-10-27
2003-01-3223
Modern multi-grade engine lubricants are formulated to “stay in grade” during field service. Viscosity loss during the early stages of lubricant life is commonly believed to be caused by mechanical degradation of the viscosity modifier in the engine [1]. The Kurt Orbahn shear stability bench test (ASTM D 6278, 30 cycles) has been the industry standard predictor of viscosity loss due to polymer shear in heavy duty diesel engine lubricants. However, the Engine Manufacturers' Association (EMA) has expressed some concern that it underestimates the degree of polymer shear found in certain engines in the field, such as the Navistar 6.0L HEUI (Hydraulic Electronic Unit Injector) Power Stroke engine; a more severe bench test would serve to improve correlation with this and other similar engine designs. This paper offers a new approach for critically examining the relationship between the bench test and field performance.
Technical Paper

Measuring Fuel Efficiency in Various Driving Cycles: How to Get Maximum Fuel Economy Improvement from the Lubricant

2015-09-01
2015-01-2042
Increasing vehicle efficiency has been one of the key drivers of the automotive industry worldwide due to new government emission legislations and rising fuel costs. While original equipment manufacturers (OEMs) are responding with innovative hardware designs for new models, lubricant companies are developing additive solutions to reduce frictional losses in the engine thereby increasing fuel economy of both new and existing vehicles. Fuel efficiency of the vehicle can be measured in a variety of driving cycles, including the New European Driving Cycle (NEDC), Japanese JC-08, and FTP-75 (Federal Test Procedure). The type of vehicle used in fuel economy evaluation in the same cycle plays a significant role. Fuel consumption rates for the same vehicle measured in these driving cycles vary due to the differences in the cycles. Thus, to assess the effect of the lubricant on fuel efficiency in various cycles, the fuel consumption is measured relative to a reference oil.
Technical Paper

Lubricant Requirements of an Advanced Designed High Performance, Fuel Efficient Low Emissions V-6 Engine

2001-05-07
2001-01-1899
Modern high power density gasoline fueled engines place an ever-increasing demand on the engine lubricant. In this study, it is shown that advances in engine design to increase performance, improve fuel economy and lower emissions have outpaced the development of typical commercial engine lubricants. Advanced designed engines began to experience oil starvation as a result of a combination of driving cycles, oil quality and poor maintenance practices. The cause was traced to excessive increases in borderline pumping viscosity as measured by MRV TP-1 (ASTM D4684). Used oil analysis for MRV TP-1 showed viscosity greatly increased in excess of stay-in-grade requirements and in many cases the crankcase lubricant was solid at the temperature appropriate for its viscosity grade. However, at the same time CCS values were in grade or only slightly (1W grade) elevated.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

Investigating the morphology and nanostructure of carbon black dispersed in lubricant oils and their impact on chain wear as a proxy of marginally lubricated components

2023-09-29
2023-32-0116
Excessive soot concentration in the lubricant promotes excessive wear on timing chains. The relationship between chain wear and soot concentration, morphology, and nanostructure, however, remains inconclusive. In this work, a chain wear test rig is used to motor a 1.3 L diesel engine following the speed profile of a Worldwide Harmonized Light Vehicle Test Cycle (WLTC). The lubricant oil was loaded with 3% carbon black of known morphology. The chain length is measured at regular intervals of 20 WLTC cycles (i.e. 10 hours) and the wear is expressed as a percentage of total elongation. Oil samples were collected and analysed with the same frequency as the chain measurements. Carbon black morphology and nanostructure were investigated using Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM).
Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Technical Paper

Identifying the limitations of the Hot Tube test as a predictor of lubricant performance in small engine applications

2020-01-24
2019-32-0510
The Hot Tube Test is a bench test commonly used by OEMs, Oil Marketers and Lubricant Additive manufacturers within the Small Engines industry. The test uses a glass tube heated in an aluminum block to gauge the degree of lacquer formation when a lubricant is subjected to high temperatures. This test was first published by engineers at Komatsu Ltd. (hence KHT) in 1984 to predict lubricant effects on diesel engine scuffing in response to a field issue where bulldozers were suffering from piston scuffing failures [1]. Nearly 35 years after its development the KHT is still widely used to screen lubricant performance in motorcycle, power tool and recreational marine applications as a predictor of high-temperature piston cleanliness - a far cry from the original intended performance predictor of the test. In this paper we set out to highlight the shortcomings of the KHT as well as to identify areas where it may still be a useful screening tool as it pertains to motorcycle applications.
Technical Paper

ISO Paraffinic Diesel Fuel Lubricity Study

2022-10-03
2022-01-5073
An ad hoc working group (WG) “AG1” was formed by ISO/TC22/SC34 [1] to conduct the necessary research to mitigate concerns with the prediction of lubricity in paraffinic diesel fuel (e.g., renewable diesel [RD] and gas-to-liquids [GTL] fuel), using ISO 12156-1 [2] high-frequency reciprocating rig (HFRR). Several field complaints had been raised regarding anomalies with HFRR readings of RDs not accurately predicting the lubricity of the fuel. Specific reports include readings below the 460 μm wear scar diameter (WSD) limit may still allow excessive scuffing and wear. Generally, for all fuels, there is a deterioration in precision (measurement error) in the 350 μm-500 μm range. The Paraffinic Diesel Fuel Lubricity AG1 was given the mandate to execute its work tasks comprising the below-listed deliverables while embracing the concept of continuous improvement.
X