Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Brush-Model Based Semi-Empirical Tire-Model for Combined Slips

2004-03-08
2004-01-1064
This paper presents a new method to derive the tire forces for simultaneous braking and cornering, by combining empirical models for pure braking and cornering using brush-model tire mechanics. The method is aimed at simulation of vehicle handling, and is of intermediate complexity such that it may be implemented and calibrated by the end user. The brush model states that the contact patch between the tire and the road is divided into an adhesion region where the rubber is gripping the road and a sliding region where the rubber slides on the road surface. The total force generated by the tire is then composed of components from these two regions. In the proposed method the adhesion and the sliding forces are extracted from an empirical pure-slip tire model and then scaled to account for the combined-slip condition. The combined-slip self-aligning torque is described likewise.
Technical Paper

A Comparison of Fuel-Cut Ageing during Retardation and Fuel-Cut during Acceleration

2014-04-01
2014-01-1504
The effect of various fuel-cut agings, on a Volvo Cars 4-cylinder gasoline engine, with bimetallic three-way catalysts (TWCs) was examined. Deactivation during retardation fuel-cut (low load) and acceleration fuel-cut (high load, e.g. gearshift or traction control) was compared to aging at λ=1. Three-way catalysts were aged on an engine bench comparing two fuel-cut strategies and their impact on of the life and performance of the catalysts. In greater detail, the catalytic activity, stability and selectivity were studied. Furthermore, the catalysts were thoroughly analyzed using light-off and oxygen storage capacity measurements. The emission conversion as a function of various lambda values and loads was also determined. Fresh and 40-hour aged samples showed that the acceleration fuel-cut was the strategy that had the highest contribution towards the total deactivation of the catalyst system.
Technical Paper

A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline

2001-09-24
2001-01-3610
A single cylinder, naturally aspirated, four-stroke and camless (Otto) engine was operated in homogeneous charge compression ignition (HCCI) mode with commercial gasoline. The valve timing could be adjusted during engine operation, which made it possible to optimize the HCCI engine operation for different speed and load points in the part-load regime of a 5-cylinder 2.4 liter engine. Several tests were made with differing combinations of speed and load conditions, while varying the valve timing and the inlet manifold air pressure. Starting with conventional SI combustion, the negative valve overlap was increased until HCCI combustion was obtained. Then the influences of the equivalence ratio and the exhaust valve opening were investigated. With the engine operating on HCCI combustion, unthrottled and without preheating, the exhaust valve opening, the exhaust valve closing and the intake valve closing were optimized next.
Technical Paper

A Metal Substrate with Integrated Oxygen Sensor; Functionality and Influence on Air/Fuel Ratio Control

2003-03-03
2003-01-0818
In order to achieve ultra low emission levels with three-way catalysts, an early accurate air/fuel ratio control is essential. Positioning the oxygen sensor in the first part of the substrate helps to protect the oxygen sensor from being splashed by water during cold start, so that early heating and activation becomes a less limiting factor. For emission control purpose, a position of a rear sensor in the warm part of the catalyst gives improved possibilities for oxygen buffer control during catalyst warming up conditions. This enhances balancing HC and NOx in an early phase. In addition, for OBD reasons it is possible to locate the sensor in any axial position in the catalyst, which improves design possibilities for cold start detection, even for single brick catalyst systems. The paper describes the construction of the catalyst with an integrated oxygen sensor.
Technical Paper

A Method to Evaluate the Compression Ratio in IC Engines with Porous Thermal Barrier Coatings

2018-09-10
2018-01-1778
The compression ratio is an important engine design parameter. It determines to a large extend engine properties like the achievable efficiency, the heat losses from the combustion chamber and the exhaust losses. The same properties are affected by insulation of the combustion chamber. It is therefore especially important to know the compression ratio when doing experiments with thermal barrier coatings (TBC). In case of porous TBCs, the standard methods to measure the compression ratio can give wrong results. When measuring the compression ratio by volume, using a liquid, it is uncertain if the liquid fills the total porous volume of the coating. And for a thermodynamic compression ratio estimation, a model for the heat losses is needed, which is not available when doing experiments with insulation. The subject of this paper is the evaluation of an alternative method to assess the compression ratio.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

A Simple Approach to Studying the Relation between Fuel Rate Heat Release Rate and NO Formation in Diesel Engines

1999-10-25
1999-01-3548
Modern diesel engine injection systems are largely computer controlled. This opens the door for tailoring the fuel rate. Rate shaping in combination with increased injection pressure and nozzle design will play an important role in the efforts to maintain the superiority of the diesel engine in terms of fuel economy while meeting future demands on emissions. This approach to studying the potential of rate shaping in order to reduce NO formation is based on three sub-models. The first model calculates the fuel rate by using standard expressions for calculating the areas of the dimensioning flow paths in the nozzle and the corresponding discharge coefficients. In the second sub-model the heat release rate is described as a function of available fuel energy, i.e. fuel mass, in the cylinder. The third submodel is the multizone combustion model that calculates NO for a given heat release rate under assumed air /fuel ratios.
Technical Paper

A Skeletal Kinetic Mechanism for the Oxidation of Iso-Octane and N-Heptane Validated Under Engine Knock Conditions

1999-10-25
1999-01-3484
A method for automatic reduction of detailed kinetic to skeletal mechanisms for complex fuels is proposed. The method is based on the simultaneous use of sensitivity and reaction-flow analysis. The resulting skeletal mechanism is valid for the parameter range of initial and boundary values, the analysis have been performed for. The gas-phase chemistry is analyzed in the end gas of an SI-engine, using a two-zone model. Species, not relevant for the occurrence of autoignition in the end gas, are defined as redundant. They are identified and eliminated for different pre-set levels of minimum reaction flow and sensitivity. The error in the mechanism increases monotony with increasing pre-set level of minimum reaction flow.
Technical Paper

A Study of a Glow Plug Ignition Engine by Chemiluminescence Images

2007-07-23
2007-01-1884
An experimental study of a glow plug engine combustion process has been performed by applying chemiluminescence imaging. The major intent was to understand what kind of combustion is present in a glow plug engine and how the combustion process behaves in a small volume and at high engine speed. To achieve this, images of natural emitted light were taken and filters were applied for isolating the formaldehyde and hydroxyl species. Images were taken in a model airplane engine, 4.11 cm3, modified for optical access. The pictures were acquired using a high speed camera capable of taking one photo every second or fourth crank angle degree, and consequently visualizing the progress of the combustion process. The images were taken with the same operating condition at two different engine speeds: 9600 and 13400 rpm. A mixture of 65% methanol, 20% nitromethane and 15% lubricant was used as fuel.
Technical Paper

A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging

1999-10-25
1999-01-3680
An experimental study of the Homogeneous Charge Compression Ignition (HCCI) combustion process has been conducted by using chemiluminescence imaging. The major intent was to characterize the flame structure and its transient behavior. To achieve this, time resolved images of the naturally emitted light were taken. Emitted light was studied by recording its spectral content and applying different filters to isolate species like OH and CH. Imaging was enabled by a truck-sized engine modified for optical access. An intensified digital camera was used for the imaging. Some imaging was done using a streak-camera, capable of taking eight arbitrarily spaced pictures during a single cycle, thus visualizing the progress of the combustion process. All imaging was done with similar operating conditions and a mixture of n-heptane and iso-octane was used as fuel. Some 20 crank angles before Top Dead Center (TDC), cool flames were found to exist.
Technical Paper

A Theoretical Study of the Potential of NOx Reduction by Fuel Rate Shaping in a DI Diesel Engine

2000-10-16
2000-01-2935
In this paper, a theoretical study is presented where fuel rate shaping is analyzed in combination with EGR as a method for reducing NOx formation. The analytical tools used include an empirically based model to convert fuel rate to heat release rate, and a zero dimensional multizone combustion model to calculate combustion products, local flame temperatures and NOx emissions at a given heat release rate. The multizone model, which has been presented earlier, includes flame radiation and convective heat losses. Several geometrical shapes of the fuel rate are tested for different combustion timings and EGR rates. It is found that the fuel rate giving the lowest NOx formation varies with the injection timing. In order to lower the NOx emissions at normal and advanced injection timings, the fuel rate should have a rather long duration, and start at its maximum level followed by a slow decay.
Technical Paper

A Three-Point Belt in the Rear Center Seating Position as Accessories

1987-02-23
870483
This paper describes some of the engineering situations encountered during the development of a three point belt for the rear center seating position in a sedan car. The belt will be sold as an accessory for the after market. The reinforcement of the parcel shelf to achieve a sufficiently strong anchorage for the retractor and the geometrical locations of the belt anchorages are presented. The conflict between the geometrical requirements, the design and the visibility will be focussed. The need for updated requirements for belt installations in the rear center seating position will be pointed out. Data from the performed tests show that all demands from regulations and “in-house” requirements are fulfilled.
Technical Paper

A Turbocharged Engine with Microprocessor Controlled Boost Pressure

1981-02-01
810060
A prototype boost pressure control system, utilizing a microprocessor to govern the wastegate settings, has been developed and tested on a turbocharged petrol engine with intercooler. The Volvo Computer Controlled Turbo (VCCT)-system allows optimum boost pressure settings for varied operating conditions. A knock detecting system retards ignition and lowers boost simultanously, minimizing torque loss with no increase of exhaust gas temperature. For high performance turbo engines this strategy is important, since at continous high power operation no increase in thermal loading (with risk for degraded durability), can be accepted. Vehicle tests show significant improvements in performance and fuel economy.
Technical Paper

A Wind Tunnel Study Correlating the Aerodynamic Effect of Cooling Flows for Full and Reduced Scale Models of a Passenger Car

2010-04-12
2010-01-0759
In the early stages of an aerodynamic development programme of a road vehicle it is common to use wind tunnel scale models. The obvious reasons for using scale models are that they are less costly to build and model scale wind tunnels are relatively inexpensive to operate. It is therefore desirable for model scale testing to be utilized even more than it is today. This however, requires that the scale models are highly detailed and that the results correlate with those of the full size vehicle. This paper presents a correlation study that was carried out in the Chalmers and Volvo Car Aerodynamic Wind Tunnels. The aim of the study was to investigate how successfully a correlation of the cooling air flow between a detailed scale model and a real full size vehicle could be achieved. Results show limited correlation on absolute global aerodynamic loads, but relative good correlation in drag and lift increments.
Technical Paper

An Air Hybrid for High Power Absorption and Discharge

2005-05-11
2005-01-2137
An air hybrid is a vehicle with an ICE modified to also work as an air compressor and air motor. The engine is connected to two air reservoirs, normally the atmosphere and a high pressure tank. The main benefit of such a system is the possibility to make use of the kinetic energy of the vehicle otherwise lost when braking. The main difference between the air hybrid developed in this paper and earlier air hybrid concepts is the introduction of a pressure tank that substitutes the atmosphere as supplier of low air pressure. By this modification, a very high torque can be achieved in compressor mode as well as in air motor mode. A model of an air hybrid with two air tanks was created using the engine simulation code GT-Power. The results from the simulations were combined with a driving cycle to estimate the reduction in fuel consumption.
Technical Paper

An Ionization Equilibrium Analysis of the Spark Plug as an Ionization Sensor

1996-02-01
960337
The use of a spark plug as an ionization sensor in an engine, and its physical and chemical explanation has been investigated. By applying a small constant DC voltage across the electrodes of the spark plug and measuring the current through the electrode gap, the state of the gas can be probed. An analytical expression for the current as a function of temperature is derived, and an inverse relation, where the pressure is a function of the current, is also presented. It is also found that a relatively minor species, NO, seems to be the major agent responsible for the conductivity of the hot gas in the spark gap.
Journal Article

Automated Aerodynamic Vehicle Shape Optimization Using Neural Networks and Evolutionary Optimization

2015-04-14
2015-01-1548
The foremost aim of the work presented in this paper is to improve fuel economy and decrease CO2 emissions by reducing the aerodynamic drag of passenger vehicles. In vehicle development, computer aided engineering (CAE) methods have become a development driver tool rather than a design assessment tool. Exploring and developing the capabilities of current CAE tools is therefore of great importance. An efficient method for vehicle shape optimization has been developed using recent years' advancements in neural networks and evolutionary optimization. The proposed method requires the definition of design variables as the only manual work. The optimization is performed on a solver approximation instead of the real solver, which considerably reduces computation time. A database is generated from simulations of sampled configurations within the pre-defined design space. The database is used to train an artificial neural network which acts as an approximation to the simulations.
Technical Paper

Automatic Reduction of Detailed Chemical Reaction Mechanisms for Autoignition Under SI Engine Conditions

2000-06-19
2000-01-1895
A method for automatic reduction of detailed reaction mechanisms using simultaneous sensitivity, reaction flow and lifetime analysis has been developed and applied to a two-zone model of an SI engine fuelled with Primary Reference Fuel (PRF). Species which are less relevant for the occurrence of autoignition in the end gas are declared redundant. They are identified and eliminated for different pre-set minimum levels of reaction flow and sensitivity. The resulting skeletal mechanism is valid in the ranges of initial and boundary values for which the analyses have been performed. A measure of species lifetime is calculated from the chemical source terms, and the species with the lifetime shorter than and mass-fraction less than specified limits are selected for removal.
X