Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Influence of Spray-Target and Squish Height on Sources of CO and UHC in a HSDI Diesel Engine During PPCI Low-Temperature Combustion

2009-11-02
2009-01-2810
Laser induced fluorescence (LIF) imaging during the expansion stroke, exhaust gas emissions, and cylinder pressure measurements were used to investigate the influence on combustion and CO/UHC emissions of variations in squish height and fuel spray targeting on the piston. The engine was operated in a highly dilute, partially premixed, low-temperature combustion mode. A small squish height and spray targeting low on the piston gave the lowest exhaust emissions and most rapid heat release. The LIF data show that both the near-nozzle region and the squish volume are important sources of UHC emissions, while CO is dominated by the squish region and is more abundant near the piston top. Emissions from the squish volume originate primarily from overly lean mixture. At the 3 bar load investigated, CO and UHC levels in mixture leaving the bowl and ring-land crevice are low.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
X