Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC

2012-09-10
2012-01-1578
Partially premixed combustion has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions, even at higher loads. The problem is the ignitability at low load and idle operating conditions. The objective is to investigate the usefulness of negative valve overlap on a light duty diesel engine running with gasoline partially premixed combustion at low load operating conditions. The idea is to use negative valve overlap to trap hot residual gases to elevate the global in-cylinder temperature to promote auto-ignition of the high octane number fuel. This is of practical interest at low engine speed and load operating conditions because it can be assumed that the available boost is limited. The problem with NVO at low load operating conditions is that the exhaust gas temperature is low.
Technical Paper

The Relevance of Different Fuel Indices to Describe Autoignition Behaviour of Gasoline in Light Duty DICI Engine under PPC Mode

2019-04-02
2019-01-1147
Partially premixed combustion (PPC) with gasoline fuels is a new promising combustion concept for future internal combustion engines. However, many researchers have argued the capabilities of research octane number (RON) and Motor Octane Number (MON) to describe the autoignition behaviour of gasoline fuels in advanced combustion concepts like PPC. The objective of this study is to propose a new method, called PPC number, to characterize the auto ignition quality of gasoline fuels in a light-duty direct injected compression ignition engine under PPC conditions. The experimental investigations were performed on a 4-cylinder Volvo D4 2 litre engine. The ignition delay which was defined as the crank angle degrees between the start of injection (SOI) and start of combustion (SOC) was used to represent the auto ignition quality of a fuel.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Technical Paper

The Effect of Injection Pressure on the NOx Emission Rates in a Heavy-Duty DICI Engine Running on Methanol.

2017-10-08
2017-01-2194
Heavy-duty direct injection compression ignition (DICI) engine running on methanol is studied at a high compression ratio (CR) of 27. The fuel is injected with a common-rail injector close to the top-dead-center (TDC) with two injection pressures of 800 bar and 1600 bar. Numerical simulations using Reynold Averaged Navier Stokes (RANS), Lagrangian Particle Tracking (LPT), and Well-Stirred-Reactor (WSR) models are employed to investigate local conditions of injection and combustion process to identify the mechanism behind the trend of increasing nitrogen oxides (NOx) emissions at higher injection pressures found in the experiments. It is shown that the numerical simulations successfully replicate the change of ignition delay time and capture variation of NOx emissions.
Technical Paper

Study of Fuel Stratification on Spark Assisted Compression Ignition (SACI) Combustion with Ethanol Using High Speed Fuel PLIF

2008-10-06
2008-01-2401
An engine can be run in Homogenous Charge Compression Ignition (HCCI) mode by applying a negative valve overlap, thus trapping hot residuals so as to achieve an auto-ignition temperature. By employing spark assistance, the engine can be operated in what is here called Spark Assisted Compression Ignition (SACI) with ethanol as fuel. The influence of fuel stratification by means of port fuel injection as well as in combination with direct injection was investigated. A high-speed multi-YAG laser system and a framing camera were utilized to capture planar laser-induced fluorescence (PLIF) images of the fuel distribution. The charge homogeneity in terms of fuel distribution was evaluated using a homogeneity index calculated from the PLIF images. The homogeneity index showed a higher stratification for increased proportions of direct-injected fuel. It was found that charge stratification could be achieved through port fuel injection in a swirling combustion system.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Simulation Based Investigation of Achieving Low Temperature Combustion with Methanol in a Direct Injected Compression Ignition Engine

2019-04-02
2019-01-1152
Low temperature combustion concepts used in compression ignition engines have shown to be able to produce simultaneous reduction of oxides of nitrogen and soot as well as generating higher gross indicated efficiencies compared to conventional diesel combustion. This is achieved by a combination of premixing, dilution and optimization of combustion phasing. Low temperature combustion can be complemented by moving away from fossil fuels in order to reduce the net output of CO2 emissions. Alternative fuels are preferably liquid and of sufficient energy density. As such methanol is proposed as a viable option. This paper reports the results from a simulation based investigation on a heavy-duty multi-cylinder direct injection compression ignition engine with standard compression ratio. The engine was simulated using two different fuels: methanol and gasoline with an octane number of 70.
Technical Paper

Simple linear feedback and extremum control of GDI engines

2000-06-12
2000-05-0056
A novel approach to the control of a GDI engine is presented. The controller consists of a combination of subcontrollers, where torque feedback is a central part. The subcontrollers are with a few exceptions designed using simple linear feedback and feedforward control design methods, in contrast to traditional table-based engine control. An extremum controller is used to minimize the fuel consumption in stratified mode. The controller has been evaluated with good results on the European driving cycle using a dynamic simulation model.
Journal Article

Sensitivity Analysis Study on Ethanol Partially Premixed Combustion

2013-04-08
2013-01-0269
Partially Premixed Combustion (PPC) is a combustion concept which aims to provide combustion with low smoke and NOx with high thermal efficiency. Extending the ignition delay to enhance the premixing, avoiding spray-driven combustion and controlling the combustion temperature at an optimum level through use of suitable lambda and EGR levels have been recognized as key factors to achieve such a combustion. Fuels with high ignitability resistance have been proven to be a useful to extend the ignition delay. In this work pure ethanol has been used as a PPC fuel. The objective of this research was initially to investigate the required operating conditions for PPC with ethanol. Additionally, a sensitivity analysis was performed to understand how the required parameters for ethanol PPC such as lambda, EGR rate, injection pressure and inlet temperature influence the combustion in terms of controllability, stability, emissions (i.e.
Technical Paper

Scalability Aspects of Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2016-04-05
2016-01-0796
This article presents a study related to application of pre-chamber ignition system in heavy duty natural gas engine which, as previously shown by the authors, can extend the limit of fuel-lean combustion and hence improve fuel efficiency and reduce emissions. A previous study about the effect of pre-chamber volume and nozzle diameter on a single cylinder 2 liter truck-size engine resulted in recommendations for optimal pre-chamber geometry settings. The current study is to determine the dependency of those settings on the engine size. For this study, experiments are performed on a single cylinder 9 liter large bore marine engine with similar pre-chamber geometry and a test matrix of similar and scaled pre-chamber volume and nozzle diameter settings. The effect of these variations on main chamber ignition and the following combustion is studied to understand the scalability aspects of pre-chamber ignition. Indicated efficiency and engine-out emission data is also presented.
Technical Paper

Review and Benchmarking of Alternative Fuels in Conventional and Advanced Engine Concepts with Emphasis on Efficiency, CO2, and Regulated Emissions

2016-04-05
2016-01-0882
Alternative fuels have been proposed as a means for future energy-secure and environmentally sustainable transportation. This review and benchmarking show that several of the alternative fuels (e.g. methanol, ethanol, higher alcohols, RME, HVO, DME, and biogas/CNG) work well with several different engine concepts such as conventional SI, DICI, and dual fuel, and with the emerging concepts HCCI, RCCI, and PPC. Energy consumption is in most cases similar to that of diesel or gasoline, with the exception of methanol and ethanol that use less energy, especially in SI engines. Tailpipe emissions of CO2 with respect to engine work output (tank-to-output shaft) can be reduced by more than 15% compared to a highly efficient gasoline SI engine, and are the lowest with CNG / lean-burn SI and with alcohols in several engine concepts. Alternative fuels are considered safe and in most cases are associated with reduced risk with respect to cancer and other health and environmental issues.
Technical Paper

Regulated Emissions and Detailed Particle Characterisation for Diesel and RME Biodiesel Fuel Combustion with Varying EGR in a Heavy-Duty Engine

2019-12-19
2019-01-2291
This study investigates particulate matter (PM) and regulated emissions from renewable rapeseed oil methyl ester (RME) biodiesel in pure and blended forms and contrasts that to conventional diesel fuel. Environmental and health concerns are the major motivation for combustion engines research, especially finding sustainable alternatives to fossil fuels and reducing diesel PM emissions. Fatty acid methyl esters (FAME), including RME, are renewable fuels commonly used from low level blends with diesel to full substitution. They strongly reduce the net carbon dioxide emissions. It is largely unknown how the emissions and characteristics of PM get altered by the combined effect of adding biodiesel to diesel and implementing modern engine concepts that reduce nitrogen oxides (NOx) emissions by exhaust gas recirculation (EGR).
Technical Paper

Reducing the Cycle-Cycle Variability of a Natural Gas Engine Using Controlled Ignition Current

2013-04-08
2013-01-0862
Running an internal combustion engine with diluted methane/air mixtures has a potential of reducing emissions and increasing efficiency. However, diluted mixtures need high ignition energy in a sufficiently large volume, which is difficult to accomplish. Increasing the spark duration has shown to be a promising way of delivering more energy into the diluted charge, but this requires a more sophisticated ignition system. This work focuses on evaluating the effects regarding enhancing early flame development, reducing cyclic variations and extending the lean limit using a new capacitive ignition system as compared to a conventional inductive ignition system. The new system offers the opportunity to customise the spark by altering the electric pulse train characteristics choosing the number of pulses, the length of the individual pulses as well as the time delay between them.
Technical Paper

Pressure Sensitivity of HCCI Auto-Ignition Temperature for Gasoline Surrogate Fuels

2013-04-08
2013-01-1669
An index to relate fuel properties to HCCI auto-ignition would be valuable to predict the performance of fuels in HCCI engines from their properties and composition. The indices for SI engines, the Research Octane Number (RON) and Motor Octane Number (MON) are known to be insufficient to explain the behavior of oxygenated fuels in an HCCI engine. One way to characterize a fuel is to use the Auto-Ignition Temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of Low Temperature Heat Release (LTHR) that is closely connected to the ignition properties of the fuel. A systematic study of fuels consisting of gasoline surrogate components of n-heptane, iso-octane, toluene, and ethanol was made. 21 fuels were prepared with RON values ranging from 67 to 97.
Technical Paper

Potential Levels of Soot, NOx, HC and CO for Methanol Combustion

2016-04-05
2016-01-0887
Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads.
Technical Paper

Partially Premixed Combustion at High Load using Gasoline and Ethanol, a Comparison with Diesel

2009-04-20
2009-01-0944
This paper is the follow up of a previous work and its target is to demonstrate that the best fuel for a Compression Ignition engine has to be with high Octane Number. An advanced injection strategy was designed in order to run Gasoline in a CI engine. At high load it consisted in injecting 54 % of the fuel very early in the pilot and the remaining around TDC; the second injection is used as ignition trigger and an appropriate amount of cool EGR has to be used in order to avoid pre-ignition of the pilot. Substantially lower NOx, soot and specific fuel consumption were achieved at 16.56 bar gross IMEP as compared to Diesel. The pressure rise rate did not constitute any problem thanks to the stratification created by the main injection and a partial overlap between start of the combustion and main injection. Ethanol gave excellent results too; with this fuel the maximum load was limited at 14.80 bar gross IMEP because of hardware issues.
Journal Article

Optimization and Evaluation of a Low Temperature Waste Heat Recovery System for a Heavy Duty Engine over a Transient Cycle

2020-09-15
2020-01-2033
Powertrain efficiency is a critical factor in lowering fuel consumption and reducing the emission of greenhouse gases for an internal combustion engine. One method to increase the powertrain efficiency is to recover some of the wasted heat from the engine using a waste heat recovery system e.g. an organic Rankine cycle. Most waste heat recovery systems in use today for combustion engines use the waste heat from the exhaust gases due to the high temperatures and hence, high energy quality. However, the coolant represents a major source of waste heat in the engine that is mostly overlooked due to its lower temperature. This paper studies the potential of using elevated coolant temperatures in internal combustion engines to improve the viability of low temperature waste heat recovery.
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Journal Article

Optical Characterization of the Combustion Process inside a Large-Bore Dual-Fuel Two-Stroke Marine Engine by Using Multiple High-Speed Cameras

2020-04-14
2020-01-0788
Dual-fuel engines for marine propulsion are gaining in importance due to operational and environmental benefits. Here the combustion in a dual-fuel marine engine operating on diesel and natural gas, is studied using a multiple high-speed camera arrangement. By recording the natural flame emission from three different directions the flame position inside the engine cylinder can be spatially mapped and tracked in time. Through space carving a rough estimate of the three-dimensional (3D) flame contour can be obtained. From this contour, properties like flame length and height, as well as ignition locations can be extracted. The multi-camera imaging is applied to a dual-fuel marine two-stroke engine, with a bore diameter of 0.5 m and a stroke of 2.2 m. Both liquid and gaseous fuels are directly injected at high pressure, using separate injection systems. Optical access is obtained using borescope inserts, resulting in a minimum disturbance to the cylinder geometry.
X