Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1093
An increasing need to lower greenhouse gas emissions, and so move away from fossil fuels like diesel and gasoline, has greatly increased the interest for methanol. Methanol can be produced from renewable sources and eliminate soot emissions from combustion engines [1]. Since compression ignition (CI) engines are used for the majority of commercial applications, research is intensifying into the use of methanol, as a replacement for diesel fuel, in CI engines. This includes work on dual-fuel set-ups, different fuel blends with methanol, ignition enhancers mixed with methanol, and partially premixed combustion (PPC) strategies with methanol. However, methanol is difficult to ignite, using compression alone, at low load conditions. The problem comes from methanol’s high octane number, low lower heating value and high heat of vaporization, which add up to a lot of heat being needed from the start to combust methanol [2].
Technical Paper

Investigation of Combustion Characteristics of a Fuel Blend Consisting of Methanol and Ignition Improver, Compared to Diesel Fuel and Pure Methanol

2024-04-09
2024-01-2122
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression.
X