Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

MMLV: Door Design and Component Testing

2015-04-14
2015-01-0409
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. This paper reviews the mass reduction and structural performance of aluminum, magnesium, and steel components for a lightweight multi material door design for a C/D segment passenger vehicle. Stiffness, durability, and crash requirements are assessed.
Technical Paper

MMLV: Corrosion Design and Testing

2015-04-14
2015-01-0410
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company was a result of a US Department of Energy project DE-EE0005574. The project demonstrated the lightweighting potential of a five passenger sedan while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364 kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three cylinder engine resulting in significant environmental benefit and increased fuel economy. This paper includes details of the materials, surface treatments and assembly processes for the two MMLV prototype corrosion vehicles. Two corrosion mitigation strategies are documented.
Journal Article

Fracture Characterization of Automotive Alloys in Shear Loading

2015-04-14
2015-01-0528
Two different shear sample geometries were employed to investigate the elastoplastic and failure behaviour of three automotive alloy rolled sheets; a highly anisotropic magnesium alloy (ZEK100) and two relatively isotropic dual phase steels (DP600 and DP780). The performance of the so-called butterfly type specimen (Mohr and Henn 2007, Dunand and Mohr 2011) was evaluated at quasi-static conditions along with the shear geometry of Peirs et al. (2012) using in situ 3-D digital image correlation (DIC) strain measurement techniques. It was shown that both test geometries resulted in similar trends of the load-displacement response; however, the fracture strains obtained using the butterfly specimen were lower for the ZEK100 and DP780. It was demonstrated that the ZEK100 exhibits strong anisotropy in terms of the shear work hardening rate and failure strain.
Technical Paper

Comparative Corrosion Assessment of Coated Alloys for Multi-Material Lightweight Vehicle Architectures

2015-04-14
2015-01-0738
The purpose of this study was to conduct a comparative corrosion assessment of alloys and coating schemes of interest for the fabrication of multi-material lightweight vehicle architectures. Alloys considered for this application included galvanized high strength low alloy steel, aluminum alloy AA6111 and magnesium alloy ZEK100. The coating scheme considered for corrosion protection included a layered paint top-coat scheme that was applied to a pre-treated surface. The pre-treatments included an alloy-specific commercial conversion coating (CC) and a plasma electrolytic deposition (PED) process that was applied only to the ZEK100 material. The corrosion assessment of the scribed coated alloy panels was conducted after 1000 h exposure in the ASTM B117 salt fog environment. Characterization of the mode and extent of corrosion damage observed and the role played by the exposed alloy microstructure utilized both light optical microscopy and electron microscopy.
X