Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Spray Characterization of a Single-Hole Gasoline Injector under Flash Boiling Conditions

2014-11-11
2014-32-0041
In the next future, improvements of direct injection systems for spark-ignited engines are necessary for the potential reductions in fuel consumptions and exhaust emissions. The admission and spread of the fuel in the combustion chamber is strictly related to the injector design and performances, such as to the fuel and environmental pressure and temperature conditions. In this paper the spray characterization of a GDI injector under normal and flash-boiling injection conditions has been investigated. The paper is mainly focused both on the capability of the injection apparatus/temperatures controller system to realize flash-boiling conditions, and the diagnostic setup to catch the peculiarities of the spray behavior. The work aims reporting the spray characterization under normal and flash-boiling conditions.
Technical Paper

Application of the CTC Model to Predict Combustion and Pollutant Emissions in a Common-Rail Diesel Engine Operating with Multiple Injections and High EGR

2012-04-16
2012-01-0154
Multiple injections and high EGR rates are now widely adopted for combustion and emissions control in passenger car diesel engines. In a wide range of operating conditions, fuel is provided through one to five separated injection events, and recirculated gas fractions between 0 to 30% are used. Within this context, fast and reliable multi-dimensional models are necessary to define suitable injection strategies for different operating points and reduce both the costs and time required for engine design and development. In this work, the authors have applied a modified version of the characteristic time-scale combustion model (CTC) to predict combustion and pollutant emissions in diesel engines using advanced injection strategies. The Shell auto-ignition model is used to predict auto-ignition, with a suitable set of coefficients that were tuned for diesel fuel.
X