Refine Your Search

Topic

Author

Search Results

Technical Paper

Understanding the Stick Slip Behavior of Plastics and Target Setting: An OEM Perspective

2019-06-05
2019-01-1465
Automotive OEMs are aggressively using different materials for interiors due to value proposition and variety of options available for customers in market. Excessive usage of different grade plastics with zero gap philosophy can cause stick slip effect leading to squeak noise. Even though systems and subsystems are designed using best practices of structural design and manufacturing tolerances, extreme environmental conditions can induce contacts leading to squeak noise. Appropriate selection of interface material pairs can minimize the possibilities of squeak conditions. Stick-slip behavior of different plastics is discussed in the present study, along with critical parameters during material compatibility testing in a tribological test stand. Friction coefficient of different material pairs for a defined normal load and sliding velocity are analyzed for patterns to recognize squeaks versus time.
Technical Paper

Study of Optimal Magnification for Retained Austenite Evaluation in Low carbon Case Hardening steel Using Metallurgical Microscopy

2014-04-01
2014-01-1017
This study on optimum magnification at which Retained austenite to be evaluated by comparing the difference in determining the retained austenite in low carbon carburizing alloy steel using the optical metallurgical micrographic method and X-ray diffraction method. The retained austenite phase will be in surface and color is white in nature also its presented in between the martensite needles. It can be distinguished as separate micro-constituents by using image analyzing software. In another method the RA measurements were carried out on the surface by PROTO iXRD Retained austenite measuring system using Cr K radiation. The (211) and (200) reflections of Martensite and (220) and (200) reflections of Austenite were made for this estimation. However, the calculated values of retained austenite by metallurgical microscope in different magnifications are not identical.
Technical Paper

Soot Sensor Elimination with DPF Substrate Failure Monitoring

2024-01-16
2024-26-0153
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system.
Technical Paper

Simultaneous Reduction of NOx and PM Emissions through Low Temperature EGR Cooling in Diesel Engines

2014-10-13
2014-01-2803
In this paper, Authors tried to investigate the influence of Low Temperature EGR (LtEGR) on NOx, PM emissions and fuel efficiency in NEDC 120 cycle. Sports Utility Vehicle (SUV) less than 3.5T vehicle selected for investigation of LtEGR. The existing water cooling circuit modified to suitable to handle the LtEGR concept without changing the existing EGR cooler. Cooled EGR technology has two benefits in terms of handling high EGR ratios and more fresh air within the engine displacement. Under this assumption separate LtEGR layout was prepared for the evolution of superior EGR cooling technologies and low pressure EGR.
Technical Paper

Predictive Model Development Using Machine Learning for Engine Cranktrain System

2023-04-11
2023-01-0150
Highly competitive automotive market demands shorter product development cycle while maintaining higher standards of performance in terms of durability and Noise Vibration & Harness (NVH). Engine cranktrain system is one of the major vibration sources in engine and first torsional mode frequency is a key parameter which influences vibration characteristics. Current CAE (Computer Aided Engineering) workflow for evaluating cranktrain system performance is time-consuming and takes around 55 Hrs. It involves crankshaft geometry cleanup, stiffness calculation, 1D model building and post processing. Over the time, significant historical data has been created while performing this virtual simulation during the product development cycle. Having a trained Machine Learning (ML) model based on this historical data, which can predict first torsional mode frequency accelerates the virtual validation. In this paper, prediction of first torsional frequency of cranktrain system using ML is presented.
Technical Paper

Prediction of Hub Load on Power Steering Pump Using Dynamic Simulation and Experimental Measurement

2017-03-28
2017-01-0416
New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
Technical Paper

Prediction of Buckling and Maximum Displacement of Hood Oilcanning Using Machine Learning

2023-04-11
2023-01-0155
Modern day automotive market demands shorter time to market. Traditional product development involves design, virtual simulation, testing and launch. Considerable amount of time being spent on virtual validation phase of product development cycle can be saved by implementing machine learning based predictive models for key performance predictions instead of traditional CAE. Durability oil canning loadcase for vehicle hood which impacts outer styling and involves time consuming CAE workflow takes around 11 days to complete analysis at all locations. Historical oil canning CAE results can be used to build ML model and predict key oil canning performances. This enables faster decision making and first-time right design. In this paper, prediction of buckling behaviour and maximum displacement of vehicle hood using ML based predictive model are presented. Key results from past CAE analysis are used for training and validating the predictive model.
Technical Paper

Optimum design of a Tractor hydraulics system by innovative material development and Correlation with physical testing

2023-04-11
2023-01-0877
The tractor usage is growing in the world due to derivative of rural economy and farming process. It needed wide range of implements based on the applications of the customer. The tractor plays a major role in Agricultural and Construction applications. In a tractor, hydraulic system is act as a heart of the vehicle which controls the draft and position of the implement. Hydraulic system consists of Powertrain assembly, 3-point linkage and DC sensing assembly. The design of hydraulic powertrain assembly is challenging because the loads acting on the system varies based on the type of implement, type of crop, stage of farming and soil conditions etc., Hydraulic powertrain assembly is designed based on standards like IS 12207-2019 which regulates the test methods for the system based on the lift capacity of the tractor. In this paper, virtual simulation has been established to optimize the design and perform the test correlation.
Technical Paper

Optimized Soot Monitoring by Ammonia Injection in a sDPF System for BS6.2 Application

2024-01-16
2024-26-0141
The BS6 norms (phase 1) were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase 2 of the BS6 norms, which came into effect on April 1, 2023. In accordance with the regulation requirement, effective performance of after treatment systems like DPF and SCR demands critical hardware implementation and robust monitoring strategies in the extended operating zone. Effective OBD monitoring of DPF, which is common to all BSVI certified vehicles, such that the defined strategy detects the presence or absence of the component is imperative. A robust monitoring strategy is developed to detect the presence of the DPF in the real world incorporating the worst possible driving conditions including idling, and irrespective of other environmental factors subject to a location or terrain. The differential pressure sensor across the DPF is used to study the actual pressure drop across the DPF.
Technical Paper

Objective Drivability Evaluation on Compact SUV and Comparison with Subjective Drivability

2017-01-10
2017-26-0153
Over the ages of automotive history, expectations of the customers increases vastly starting from driving comfort, better fuel economy and a safe vehicle. Requirement of good vehicle drivability from customers are increasing without any compromise of fuel economy and vehicle features. To enhance the product, it is a must for every OEM’s to have better drivability to fulfill the needs of the customer. This paper explains Objective Drivability Evaluation done on compact SUV vehicle and comparison with subjective drivability. Vehicle manufacturer usually evaluate drivability based on the subjective assessments of experienced test drivers with a sequence of certain maneuvers. In this study, we have used the objective drivability assessment tool AVL drive to obtain the vehicle drivability rating. The vehicle inputs from the accelerometer sensor which captures the longitudinal acceleration and CAN bus signals such as engine speed, vehicle speed, accelerator pedal, are fed into the software.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
Technical Paper

Next Generation Power Distribution Unit in Wiring Harness

2019-11-21
2019-28-2571
With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. The concept of next generation power distribution unit in automobiles is achieved using miniaturization of its sub-components which involves replacing the mini fuses and JCASE fuses with LP mini and LP JCASE fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost. Furthermore, to address stringent weight and space targets, LP mini fuses and LP JCASE fuses were further replaced with micro-2 fuse and M-case fuse respectively.
Technical Paper

New Trends of Material & Heat Treatment in Automotive Transmission Shaft

2013-09-24
2013-01-2446
This paper deals with new trends in materials & heat treatment in automotive transmission shafting. The material is S48C a low carbon alloy steel and material for automotive shaft special significance as it reduces overall cost in vehicle transmission shafts. Conventional method of shaft heat heat-treatment is case hardening for 20MnCr5. S48C is low-carbon alloy steel. This is an alternate proposal to 20MnCr5.There are lot of advantages in induction hardening over case hardening. Also induction hardening process with S48C material becomes cheaper than case-hardening with 20MnCr5.Strength and resistance to stress must therefore be carefully considered during the material selection and heat-treatment process. We have done Static torsion test for 20MnCr5 (case hardened steel) and S48C (induction hardened shaft). Test results were comparable with 20MnCr5 (case hardened steel). Also after test a metallurgical inspection was done on an S48C (induction hardened shaft).
Technical Paper

Monocoque Vehicle Body-In-White Life Evaluation Using Torsion Endurance Test on Rig

2016-04-05
2016-01-0276
In an automotive product development environment, identifying the premature structural failures is one of the important tasks for Body-In-White (BIW), sub-assemblies and components. The integrated car body structure i.e. monocoque structure, is widely used in passenger cars and SUVs. This structure is subjected to bending and torsional vibrations, due to dynamic loads. Normally the stresses due to bending are relatively small compared to stresses due to torsion in Body-In-White under actual road conditions [1]. This paper focuses on evaluating the life of Body-In-White structures subjected to torsional loading. An accelerated test method was evolved for identifying failure modes of monocoque BIW by applying torsion fatigue. The observation of the crack generation and propagation was made with respect to a number of torsion fatigue cycles.
Technical Paper

Methodology Development for Multibody Simulation to Understand Shift Shock Behaviour

2021-04-06
2021-01-0714
One of the critical challenges for transmission design is to predict the gear shift dynamics accurately and to ensure smooth gear shift quality for different driver behaviors while shifting. This calls for detailed understanding of the RWUPs. Through prototype testing, understanding the influence of different parameters is costly and time consuming. Also, the testing does not provide necessary visualization of exact physics and the identification of issues is difficult. One of such typical concerns is shift shock while shifting the gear. Sudden gear engagement or disengagement leads to impact torque in drivetrain during shifting of gears, which in turn results in winding and unwinding of powertrain due to vehicle Inertia. This induces noise and vibration that affects driver comfort. The paper presents, the methodology to frontload prediction of dynamics of gear shifting that leads to shift shock behavior.
Technical Paper

Methodology & Experimental Study to Reduce Steering Effort and Improve Directional Stability in Three Wheeled Vehicles

2021-09-22
2021-26-0083
With an intense competitive automotive environment, it becomes imperative for any OEM to launch their products into the market in a short span of time & with a ‘First Time Right’ approach. Within the current scenario in the Automotive Industry, the selection of optimum set of hard points and wheel geometry often becomes an iterative or a trial-and-error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Through this paper, an attempt has been made to develop a methodology for deciding wheel geometry parameters (covered in the later section of this paper like Caster, Camber, Mechanical trail, etc.) [1, 2, 3, 4] for a three wheeled vehicle as a First Time Right (FTR) approach to cut down on conventional, expensive & time-consuming iterative approach.
Technical Paper

Measurement Technique for Quantifying Structure Borne and Air Borne Noise Levels in Utility Vehicle

2014-04-01
2014-01-0003
Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation.
Technical Paper

Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

2023-04-11
2023-01-0598
Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model.
Technical Paper

Investigation on microstructure, mechanical and wear properties of alloyed gray cast iron for brake applications

2013-11-27
2013-01-2881
The strength and wear resistance of four alloyed cast irons with elements like Ni. Mo, Cu, Cr and Al have been compared and analyzed. The increased hardness is reducing the wear resistance of the alloy due to graphite flakes. Higher carbon produces more graphite flakes which act as weak points for reducing strength and wear resistance. The wear rate increases for harder cast iron sample with more graphite flakes. Wear rate drastically increases with increase in carbon equivalent. Strength was found to decrease for samples with higher graphite flakes. The wear debris consisted of graphite flakes in platelet like morphology along with iron particles from the matrix. The presence of carbon at the sliding interface also sometimes decreases wear rate.
Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
X