Refine Your Search

Topic

Author

Search Results

Technical Paper

Weight Reduction of Shifter Forks using Steel Inserts

2013-09-24
2013-01-2444
Shift quality of a manual transmission is a critical characteristic that is requires utmost care by the designers while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shift fork design, shifter design, gear design, transmission oil selection etc. Designers have realized that shift fork is critical element for improving shift feel of a transmission. This paper focuses upon the reduction in weight of the overall transmission shift system by using steel inserts in aluminum shifter forks. No compromise on the stiffness and strength of the shift fork of a manual transmission is done. Stiffness and strength of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A 5-speed manual transmission is used as an example to illustrate the same.
Technical Paper

Vehicle Sway Prediction in Hydraulic Circuit Failed Condition on 4 Wheeled Vehicle with ‘X’ Split Brake Configuration

2017-01-10
2017-26-0344
A 4 wheeled vehicle with X-split brake configuration, in hydraulic circuit failed condition will have a behavior of induced sway due to braking force variation in the front and rear diagonally. With increasing vehicle speed, engine power & customer expectations, the situation becomes more critical and challenging in designing a brake system which caters in meeting the homologation requirement at an expense of vehicle sway within controllable limits of driver / customer. This paper proposes a novel approach & methodology to overcome the above situation by predicting the effect of brake force distribution variation on the vehicle swaying behavior during circuit failed braking condition. This study will quantify vehicle sway, caused due to imbalance in brake force distribution during a circuit failed braking event on X Split configuration vehicles.
Technical Paper

Using Vehicle Specifications to Gain Insights into Different Automotive Market Requirements

2020-04-14
2020-01-1283
Determination of vehicle specifications (for example, powertrain sizing) is one of the fundamental steps in any new vehicle development process. The vehicle system engineer needs to select an optimum combination of vehicle, engine and transmission characteristics based on the product requirements received from Product Planning (PP) and Marketing teams during concept phase of any vehicle program. This process is generally iterative and requires subject matter expertise. For example, accurate powertrain sizing is essential to meet the required fuel economy (FE), performance and emission targets for different vehicle configurations. This paper analyzes existing vehicle specifications (Passenger Cars/SUVs - Gasoline/Diesel) in different automotive markets (India, Europe, US, Japan) and aims to determine underlying trends across them.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Journal Article

Ultra Flow, High Stiffness Polypropylene Material for Light Weight Exterior Trim Panels

2022-03-29
2022-01-0332
Light weighting is an effective strategy in increasing energy efficiency in the automotive industry. In this paper, mass reduction with cost benefit was targeted in an exterior trim panel. Polypropylene copolymer (PPCP) compound was developed for a large exterior trim panel (1400 X 700mm) having an integrated grill mesh. The part had challenging requirements in terms of slow speed impact, structural durability, dimensional stability, aesthetics, thermal ageing resistance, cold impact resistance, scratch resistance and weathering resistance. By having ultra-high flow behavior, optimum tensile strength, modulus, impact strength and thermal properties, the PPCP compound met the requirements for a thin wall exterior trim panel with a thickness of 2.6mm. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analyzed by using mold flow analysis.
Technical Paper

UDM Tip Temperature Control Using Thermosyphon Effect

2020-08-18
2020-28-0040
In today’s automobile industry where BS6 emission is posing a high challenge for aggregate development, cost control and with limited timeline. The main target is to provide the cooling system to have less impact on the in terms of cost, weight and to meet the challenging engineering requirement. Thus, the frugal engineering comes into the picture. This paper shows the application of thermosyphon principle for UDM injector cooling thereby reducing the rotation parts and power consumption such as an electric pump. Thermosyphon is a method of passive heat exchange and is based on natural convection, which circulates a fluid without the necessity of a mechanical or electric pump. The natural convection of the liquid commences when heat transfer to the liquid gives rise to a temperature difference from one side of the loop to the other.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Study of Indirect Heat Pump for an Electric Vehicle

2023-09-14
2023-28-0023
Electric Vehicle is the need of an hour, as due to excessive usage of IC Engine vehicles has resulted in the depletion of the ozone layer to a significant level and fuel cost is increasing. With new technologies coming into the market, challenges come hand in hand because of Electric Vehicle. In comparison to IC Vehicle, areas of thermal management or the number of components for which thermal management needs to be done is higher and rather complex. As the thermal management system is the second highest energy consuming source after the powertrain of the electric vehicle, an efficient and reliable design is mandatory to ensure better range in an Electric Vehicle. Thermal Management of the Electric Vehicle has been identified as one of the critical parameters for balancing both cabin comfort as well as Battery temperature. One of the major concerns is meeting the Cabin comfort during colder weather with minimum energy consumption.
Technical Paper

Split Type Crankcase Design for a Single Cylinder LCV Diesel Engine

2017-01-10
2017-26-0040
Serious efforts have been put in space to focus on lowering the fuel consumption and CO2 discharge to the environment from Automotive Diesel Engines. Though more focus is put on material up gradation approach on weight perspective, it is accompanied by undesirable cost increase and manufacturing complexity. As a part of development of a single cylinder engine for a light commercial vehicle application, a unique approach of integrated split type crankcase design is designed and developed. This design have addressed all the key factors on Weight, Cost and Manufacturing perspectives. The split type crankcase configuration, particularly middle-split configuration, integrates the oil sump, front cover and flywheel housing in a single unit beneficial from the point of view of reducing engine weight and thus reducing the manufacturing costs. This crankcase is also excellent from the serviceability point of view.
Technical Paper

Simultaneous Reduction of NOx and PM Emissions through Low Temperature EGR Cooling in Diesel Engines

2014-10-13
2014-01-2803
In this paper, Authors tried to investigate the influence of Low Temperature EGR (LtEGR) on NOx, PM emissions and fuel efficiency in NEDC 120 cycle. Sports Utility Vehicle (SUV) less than 3.5T vehicle selected for investigation of LtEGR. The existing water cooling circuit modified to suitable to handle the LtEGR concept without changing the existing EGR cooler. Cooled EGR technology has two benefits in terms of handling high EGR ratios and more fresh air within the engine displacement. Under this assumption separate LtEGR layout was prepared for the evolution of superior EGR cooling technologies and low pressure EGR.
Technical Paper

Simulations Based Approach for Vehicle Idle NVH Optimization at Early Stage of Product Development

2011-05-17
2011-01-1591
The noise and vibration performance of diesel fueled automotives is critical for overall customer comfort. The stationary vehicle with engine running idle (Vehicle Idle) is a very common operating condition in city driving cycle. Hence it is most common comfort assessment criteria for diesel vehicles. Simulations and optimization of it in an early stage of product development cycle is priority for all OEMs. In vehicle idle condition, powertrain is the only major source of Noise and Vibrations. The key to First Time Right Idle NVH simulations and optimization remains being able to optimize all Transfer paths, from powertrain mounts to Driver Ear. This Paper talks about the approach established for simulations and optimization of powertrain forces entering in to frame by optimizing powertrain mount hard points and stiffness. Powertrain forces optimized through set process are further used to predict the vehicle passenger compartment noise and steering vibrations.
Technical Paper

Simulation of Differential Stroke (D-Cycle) Engine Technology for Agricultural Tractor

2022-03-29
2022-01-0389
Model based calibration is extensively used by the automotive OEMs (Original Equipment manufacturers) because of its correlation accuracy with test data and freezing the operating parameters such as injection timings, EGR rates, fuel quantity etc. The prediction of Brake specific Fuel consumption (BSFC), Exhaust and intake temperatures are very close to test data. The prediction of Brake specific NOx is directionally reliable with acceptable tolerance.
Technical Paper

Selection of Optimal Design Parameters to Achieve Improved Occupant Performance in Frontal Impacts

2013-04-08
2013-01-0756
Crashworthiness enhancement of vehicle structures is a very challenging task during the early design development process. Major factors influencing occupant injury in frontal impact are vehicle front crush space, crash pulse severity, restraint properties and occupant packaging space. This paper establishes a methodology to define suitable criterion that will guide the designers to select the optimal values of the above mentioned parameters during the early phase of the vehicle development. The usage of lumped mass models, pulse characterization techniques were explored to validate the results. Efficient crash energy management, the concepts of ride down and restraint efficiency parameters were also discussed in the paper.
Technical Paper

Reduction of Driveline Boom Noise and Vibration of 40 Seat Bus through Structural Optimization

2017-07-10
2017-28-1926
In today’s automotive scenario, noise vibration and harshness (NVH) has become a synonym for quality perception. This paper evaluates the problem of vibration and noise experienced in M2 category 40 seat bus and suggests the counter measures. Severe vibration is experienced on the bus floor, predominantly towards rear part of the bus. Vibration along with acoustic boom occurs prominently in 4th gear wide open throttle operating condition between 1300-1600 rpm of the engine. This paper focuses on reducing NVH levels by working on the transfer path with little modifications on power-train. Preliminary torsional measurements conducted on powertrain indicated high torsional excitation in the driveline during the problematic rpm zone. Further, Operational Deflection Shape (ODS) analysis revealed that the transfer path to the cabin is rear differential unit and suspension links. The dominant frequencies were identified along the transfer path and suitable modifications were done.
Technical Paper

Quantitative Evaluation of Steering System Rattle Noise

2017-07-10
2017-28-1952
Today’s automotive industry in the process of better fuel efficiency and aiming less carbon foot print is trying to incorporate energy saving and hybrid technologies in their products. One of the trends which has been followed by Original Equipment Manufacturers (OEMs) is the usage of Electric Power Steering (EPS) system. This has been an effective option to target fuel saving as compared to hydraulically assisted power steering system. EPS has been already tested successfully, not only on system level but also on vehicle level for endurance and performance by OEMs as per their norms and standards. Over the decade, NVH (noise, vibration & harshness) have become one of the touch points for customer perception about vehicle quality. This leads us to a commonly perceived problem in EPS or manual type steering system i.e. rattle noise.
Technical Paper

Powertrain Noise & Sound Quality Refinement for New Generation Common Rail Engines

2010-06-09
2010-01-1414
Noise & sound quality has gained equal importance as that of emissions and crash safety of the vehicles. With increased engine power to weight ratio, the challenges for NVH engineers has increased multifold. Passenger compartment comfort levels are getting affected largely due to lighter and powerful engines. Same time, there is pressure to reduce overall vehicle weight and cost. This impose constraints to NVH engineer in designing the body structure and sound package to reduce the effect of powertrain forces and airborne noise on passenger compartment. In addition to weight constraints, there is trend emerging to use two & three cylinder engines which need to perform on par with four cylinder engines. This has shown adverse effect on vehicle NVH performance due to wider low frequency unbalance forces.
Technical Paper

Optimization of the Bearing Oil Supply Concept of a High Power-Density Diesel Engine to Minimize Oil Pump Friction

2020-09-25
2020-28-0338
Reducing the mechanical friction of internal combustion engines could play a major role in improving the brake specific fuel consumption (BSFC). Hence, it is important to reduce the friction at every component and sub-system level. In the present work, the oil pump friction of a 1.5 liter 4-cylinder diesel engine is optimized by reducing the oil pump displacement volume by 20%. This could be achieved by adopting an optimized oil supply concept which could reduce the oil leakage through the main bearings and connecting rod bearings. A 1-dimensional oil flow simulation was carried out to predict the oil flow distribution across the engine for different speeds. The results indicate that the oil leakage through the main bearings and connecting rod bearings contribute to ~25% of the total oil flow requirement of the engine. In a conventional oil supply concept, the big-end bearing of each connecting rod is connected to the adjacent main bearing through an internal oil hole.
Technical Paper

Optimization of Tip-In Response Character of Sports Utility Vehicle and Verification with Objective Methodology

2015-04-14
2015-01-1354
Each OEM has a distinguishing drivability character that defines its image in the market to achieve brand differentiation. Drivability is one of the important factors along with fuel economy that determines the success of a vehicle vis-à-vis its competitors. It can be said that the need for good drivability among customers is increasing day by day similar to the need for high fuel economy. Drivability is the response that a vehicle delivers to the inputs of the driver which are mainly accelerator, brake, clutch, gear and steering. The dynamic response of the vehicle is mainly in terms of velocity and acceleration. The way the response is delivered will characterize the drivability of a vehicle. The drivability event discussed in this paper is throttle tip-in response which is one of the critical evaluation factors for defining the character of a Sports Utility Vehicle.
Technical Paper

Optimization of IP Duct Vane Articulation for Improved Cabin Airflow Directivity

2019-10-11
2019-28-0132
The air velocity achieved at driver and passenger aim point is one of the key parameters to evaluate the automotive air-conditioning system performance. The design of duct, vent and vanes has a major contribution in the cabin air flow directivity. However, visual appearance of vent and vane receives higher priority in design because of market demand than their performance. More iterations are carried out to finalize the HVAC duct assembly until the target velocity is achieved. The objective of this study is to develop an automated process for vane articulation study along with predicting the optimized velocity at driver and passengers. The automated simulation of vane articulation study is carried out using STAR-CCM+ and SHERPA optimization algorithm which is available in HEEDS tool. The minimum and maximum vane angle are defined as parameters and face level velocity is defined as response.
Technical Paper

Optimization of EGR Mixer to Minimize Thermal Hot Spot on Plastic Duct & Soot Deposition on Throttle Valve Using CFD Simulation

2019-01-09
2019-26-0286
In recent time, with inception of BS VI emission regulation with more focus on fuel economy and emission, many engine parts which were conventionally made from metal are getting replaced with plastic components for reducing weight to attain better fuel economy. EGR is commonly used technique to reduce emissions in diesel engine along with after treatment devices. EGR reduces peak combustion temperature inside the combustion chamber thereby reducing NOx. EGR is bypassed from the exhaust manifold, cooled down in EGR cooler and mixed with intake air at upstream of the intake manifold. Throttle valve is used for controlling the charged air flow to cylinders for different vehicle operating conditions. With compact engine layout EGR mixer are often located near to throttle valve thereby increasing the possibility of soot deposition on throttle valve.
X