Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Door Cutline Determination with Mathematical Modelling on CATIA V5

2019-10-11
2019-28-0107
Door shut-line definition is the first vital step in car body door engineering and depends on the hinge position, hinge shape, manufacturing capabilities and other parameters. In the design process, once the hinge axis definition is finalized door shut-line is defined which should satisfy two major requirements. The requirements are clearance between the door outer surface with its surrounding components (like hinges, fender, other door etc.) and assembly feasibility. Another one is the manufacturability of the proposed design. The above conditions must be checked on different locations of the door as well as w.r.t different openings of the door. The paper presents a mathematical model to determine the door shut-line position with great computational efficiency. This method propounds closure engineer with parameters to define the shut line rather than going for cumbersome manual iterative process.
Technical Paper

Understanding the Stick Slip Behavior of Plastics and Target Setting: An OEM Perspective

2019-06-05
2019-01-1465
Automotive OEMs are aggressively using different materials for interiors due to value proposition and variety of options available for customers in market. Excessive usage of different grade plastics with zero gap philosophy can cause stick slip effect leading to squeak noise. Even though systems and subsystems are designed using best practices of structural design and manufacturing tolerances, extreme environmental conditions can induce contacts leading to squeak noise. Appropriate selection of interface material pairs can minimize the possibilities of squeak conditions. Stick-slip behavior of different plastics is discussed in the present study, along with critical parameters during material compatibility testing in a tribological test stand. Friction coefficient of different material pairs for a defined normal load and sliding velocity are analyzed for patterns to recognize squeaks versus time.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Topology Optimization of Landing Gear for Additive Manufacturing

2020-09-25
2020-28-0389
In the pioneering sectors of design and development, industries are looking for computer integrated solutions for product development; especially in aerospace industries where the demands for reduction in the development cycles and prototyping iterations. Generative design and topology optimization are the recent tools for achieving the desired design solutions. Topology optimization aims to find an ideal structural configuration within the given design domain with various constraints, objectives, and boundary conditions. In this study, topology optimization is used as a design tool in the development phase of a component. An efficient methodology is developed based on topology optimization for regeneration of a tertiary components. The topology optimization approach used in this research is divided into three main stages: modelling, optimization and regeneration.
Technical Paper

Thermal Performance and Ambient Airside Pressure Drop Prediction for Automotive Charge Air Cooler Using 1-D Simulation

2021-09-15
2021-28-0135
The present work discusses the developed simulation model aimed to predict the heat rejection (HR) performance and external pressure drop characteristics of automotive charge air cooler (CAC). Heat rejection and airside pressure drop characteristics of CAC were predicted for the conditions of different charge air mass flow rates and different cooling air velocities. The lack of detailed research on CAC performance prediction has motivated the development of the proposed simulation model. The present 1-D simulation has been developed based on the signal library of AMESIM application tool. Input parameters for this simulation such as core size, tube pitch, tube height, number of tubes, fin density, louver angle, louver pitch, charge air mass flow rate, cooling air velocity, charge air inlet temperature, and ambient temperature. Heat rejection curve and airside pressure drop of CAC were the output of the present simulation.
Technical Paper

Systematic Work Flow for Fatigue Life Prediction of Automotive Components

2019-10-11
2019-28-0021
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation.
Technical Paper

Synchronizer Spring Failure Due to Gear Shift Loads - Investigation and Design Recommendations

2023-11-10
2023-28-0051
In manual transmission, the vital function of synchronizer pack is to synchronize the speed of the target gear for smooth gear shifting. The synchronizer pack consists of various elements and each of these elements has specific function. These elements are baulk rings, shifter sleeve, hub, synchro key, synchro springs etc. The function of synchronizer can be affected due to failure of any one of these elements. This work focuses on the failure of synchronizer pack due to synchro spring failure. The function of synchronizer spring is to exert the required force, to index the synchronizer ring before the movement of shifter sleeve over synchronizer ring. During the shifting of shifter sleeve from one gear to another gear, the springs deflect in both shifting directions. This causes fatigue failure of synchronizer springs. The manufacturing variations, and part quality issues results in very early fatigue failure of synchronizer springs.
Technical Paper

Study of Intake and Exhaust System Acoustic Performance Refinement with the Help of Vibro-Acoustic Analysis Tool

2010-06-09
2010-01-1427
Increase in customer's awareness for better vehicle NVH has prompted automobile industry to address NVH issues more seriously. Among other critical vehicle systems for NVH, Air Intake and Exhaust Systems play an important role in terms of passenger compartment noise, sound quality and vehicle pass-by noise. Hence proper design & development of these systems is imperative to reduce their contribution in overall vehicle NVH. This needs to be achieved within constraints of meeting other functional requirements such as emissions and engine performance. The design parameters one needs to look at while developing the intake and exhaust system are mainly the acoustic transmission loss, structural noise radiations from the surfaces and structural isolation between body and these systems. This paper demonstrates the use of FEM approach for Vibro-Acoustic Analysis as a practical means for design of intake and exhaust system in terms of high transmission loss.
Technical Paper

Study of Elastic Axis Decoupling in Engine and Gearbox Mounting on the Vehicle Chassis

2018-07-09
2018-28-0090
The elastic axis decoupling to offset the elastic center of the automotive engine mounting system towards the center of gravity of the power-train is studied. General procedure of diagonalization of stiffness matrix which is a factor of the principle stiffness, coupled stiffness, position and inclination of engine mounts is analysed. Maintaining symmetry of the mounting system to ensure functional characteristics the elastic axis decoupling can be achieved by simplification to few factors of relative stiffness ratios, relative position ratios and multiplication factors. The effect of CG shift from the plane of symmetry on the coupling of the modes of vibration can be seen. The inevitability of perfect elastic axis decoupling can be assessed to achieve the optimal partial elastic axis decoupling required to the designers need.
Technical Paper

Spot Weld Fatigue Correlation Improvement in Automotive Structures Using Stress Based Approach with Contact Modelling

2020-04-14
2020-01-0182
In automotive Body-In-White (BIW) structures, stiffness and the fatigue behavior is greatly influenced by the properties of its joints. Spot welding is one of the most widely used process for joining of sheet metals in BIW. Spot weld fatigue life under Accelerated Durability Test (ADT) is crucial for durability performance of BIW structures. Experience of BIW validations highlighted more number of spot weld failures in CAE when compared to actual tests. Hence, lot of iterations in the form of design modifications are required to be carried out to make these spot welds meet the targets which increases design & development time as well as cost. Current practice uses force-based approach for predicting spot weld fatigue life in CAE. To improve the spot weld fatigue life correlation, extensive study has been carried out on the approaches used for calculating spot weld fatigue life, namely force & stress-based approaches.
Technical Paper

Split Type Crankcase Design for a Single Cylinder LCV Diesel Engine

2017-01-10
2017-26-0040
Serious efforts have been put in space to focus on lowering the fuel consumption and CO2 discharge to the environment from Automotive Diesel Engines. Though more focus is put on material up gradation approach on weight perspective, it is accompanied by undesirable cost increase and manufacturing complexity. As a part of development of a single cylinder engine for a light commercial vehicle application, a unique approach of integrated split type crankcase design is designed and developed. This design have addressed all the key factors on Weight, Cost and Manufacturing perspectives. The split type crankcase configuration, particularly middle-split configuration, integrates the oil sump, front cover and flywheel housing in a single unit beneficial from the point of view of reducing engine weight and thus reducing the manufacturing costs. This crankcase is also excellent from the serviceability point of view.
Technical Paper

Soot Sensor Elimination with DPF Substrate Failure Monitoring

2024-01-16
2024-26-0153
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system.
Technical Paper

Simultaneous Reduction of NOx and PM Emissions through Low Temperature EGR Cooling in Diesel Engines

2014-10-13
2014-01-2803
In this paper, Authors tried to investigate the influence of Low Temperature EGR (LtEGR) on NOx, PM emissions and fuel efficiency in NEDC 120 cycle. Sports Utility Vehicle (SUV) less than 3.5T vehicle selected for investigation of LtEGR. The existing water cooling circuit modified to suitable to handle the LtEGR concept without changing the existing EGR cooler. Cooled EGR technology has two benefits in terms of handling high EGR ratios and more fresh air within the engine displacement. Under this assumption separate LtEGR layout was prepared for the evolution of superior EGR cooling technologies and low pressure EGR.
Technical Paper

Simulation of Differential Stroke (D-Cycle) Engine Technology for Agricultural Tractor

2022-03-29
2022-01-0389
Model based calibration is extensively used by the automotive OEMs (Original Equipment manufacturers) because of its correlation accuracy with test data and freezing the operating parameters such as injection timings, EGR rates, fuel quantity etc. The prediction of Brake specific Fuel consumption (BSFC), Exhaust and intake temperatures are very close to test data. The prediction of Brake specific NOx is directionally reliable with acceptable tolerance.
Technical Paper

Silent Block Bush Design and Optimization for Pick-Up Truck Leaf Spring

2017-03-28
2017-01-0455
Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
Technical Paper

Shift Rail Interlock Design, Simulation and Analysis for Shift Force Transfer to the Shifter Finger

2013-09-24
2013-01-2443
Interlock mechanism have found multiple uses in the shift system of a manual transmission. It can either be used to block every other rail from moving other then the active shifting rail or it can be used to bring all rails in neutral positions. As a designer the aim is to make systems more compact and efficient in its functionality. This desire to have a compact shift system results in the design of an interlock ball mechanism which allows the use of a single shift finger for two different rails. To validate this design a 5 speed manual transaxle was used, in which the 5th rail and the reverse rail are combined in a single shift finger. Between the rails a single 8mm interlock ball is used to transmit the shifting force to the rails from the shift finger. After a complete analysis of the profile for every degree of gradient the model was manufactured for testing on bench setup established for shifting tests. Various tests were performed and the system was tested and validated.
Technical Paper

SCV Chassis Performance Optimization Through Parametric Beam Modelling & Simulation

2021-10-01
2021-28-0183
In automotive product development, design and development of the chassis plays an important role since all the internal and external loads pass through the vehicle chassis. Durability, NVH, Dynamics as well as overall vehicle performance is dependent on the chassis structure. Even though passenger vehicle chassis has a ladder frame or a monocoque construction, small commercial vehicle chassis is a hybrid chassis with the cabin welded to the ladder frame. As mileage is critical for sale of SCVs, making a light-weight chassis is also important. This creates a trade-off between the performance and weight which needs to be optimized. In this study, a parametric beam model of the ladder frame & the cabin of the vehicle is created in COMSOL Multiphysics. The structure has been parameterized into the long member & crossmember geometry & sections. The model calculates the first 12 natural frequencies, global stiffness, and weight.
Technical Paper

Reduction in Synchronizer Ring Wear and Improving the Cone Torque Generation by Enhancing the Lapping Operation Using Statistical Technique

2023-11-10
2023-28-0116
In automotive manual transmission gearboxes, the synchronizer rings play a vital role in gear shift operations. The efficiency of the synchronizer ring depends upon the frictional surface geometry. The critical parameter is the synchronizer ring frictional surface circularity. The circularity deviation causes higher synchronizer ring wear and poor cone torque generation. With the current manufacturing methods and the thickness of the synchronizer ring, circularity improvement is a challenge. The synchronizer ring thread turned part is lapped to improve the circularity. Reduction in circularity can be improved by optimizing the lapping operation. In this work, an optimal lapping condition was developed using statistical methods. Taguchi DOE was used to analyze the different parameter combinations along with the noise parameter – different ranges of circularity variation in turning operation. This helps to find the best lapping parameter settings to improve the reduction in circularity.
Technical Paper

Prediction of Buckling and Maximum Displacement of Hood Oilcanning Using Machine Learning

2023-04-11
2023-01-0155
Modern day automotive market demands shorter time to market. Traditional product development involves design, virtual simulation, testing and launch. Considerable amount of time being spent on virtual validation phase of product development cycle can be saved by implementing machine learning based predictive models for key performance predictions instead of traditional CAE. Durability oil canning loadcase for vehicle hood which impacts outer styling and involves time consuming CAE workflow takes around 11 days to complete analysis at all locations. Historical oil canning CAE results can be used to build ML model and predict key oil canning performances. This enables faster decision making and first-time right design. In this paper, prediction of buckling behaviour and maximum displacement of vehicle hood using ML based predictive model are presented. Key results from past CAE analysis are used for training and validating the predictive model.
Technical Paper

Powertrain Mounted Exhaust System Failure Correlation and Methodology Development in CAE

2017-01-10
2017-26-0267
Exhaust system is one of the complex automotive systems in terms of performance and strength prediction due to combination of transient mechanical and thermal loads acting on it simultaneously. Traditionally, most of automotive vehicles have exhaust systems with hot end mounted on engine and cold end mounted on chassis or BIW through hangers. A new powertrain mounted exhaust system was developed in-house. This exhaust system underwent validation and evaluation during development phase. Durability concerns were observed on exhaust system in Track test and gear shift durability test. This paper focuses on identifying the root cause of these concerns based on the failures observed during evaluation in Accelerated Durability (ADT) and gear shift durability (GSD) tests. Based on the architecture and packaging space challenges in vehicle, engine is mounted on two mounts and a roll restrictor. Muffler, which has higher inertia, is mounted at higher offset with respect to engine rolling axis.
X