Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Interior Space Optimization through Occupant Seating Layout Apportioning

2017-07-10
2017-28-1923
Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
Journal Article

Thermal Analysis of Clutch Assembly Using Co-Simulation Approach

2020-08-18
2020-28-0024
Automotive clutches are rotary components which transmits the torque from the engine to the transmission. During the engagement, due to the difference in speed of the shafts the friction lining initially slips until it makes a complete engagement. Enormous amount of heat is generated due to the slippage of the friction lining, leading to poor shift quality and clutch failure. Depending on the road & traffic conditions, and frequency of engagement and disengagement of the clutch, it generates transient heating and cooling cycles. Hill fade test with maximum GVW conditions being the worst case scenario for the clutch. A test was conducted to understand the performance of the clutch, in which clutch burning was observed. The clutch lining got blackened and burning smell was perceived. The friction coefficient drops sharply to a point until it cannot transmit the torque required to encounter the slope. This further worsen clutch slippage and lead to more severe temperature rise.
Technical Paper

Systematic CAE Approach to Minimize Squeak Issues in a Vehicle Using Stick-Slip Test Parameters

2021-09-22
2021-26-0269
Due to recent advancements in interior noise level and the excessive use of different grade leathers and plastics in automotive interiors, squeak noise is one of the top customer complaints. Squeak is caused by friction induced vibration due to material incompatibility. To improve costumer perception, interior designs are following zero gap philosophy with little control on tolerances leading to squeak issues. Often manufacturers are left with costly passive treatments like coatings and felts. The best option is to select a compatible material with color and finish; however, this will reduce the design freedom. Material compatibility or stick-slip behavior can be analyzed with a tribology test stand. However, this test is performed on a specimen rather than actual geometry. There were instances, when a material pair was found incompatible when tested on a specimen, but never showed any issue in actual part and vice versa.
Technical Paper

Simulations Based Approach for Vehicle Idle NVH Optimization at Early Stage of Product Development

2011-05-17
2011-01-1591
The noise and vibration performance of diesel fueled automotives is critical for overall customer comfort. The stationary vehicle with engine running idle (Vehicle Idle) is a very common operating condition in city driving cycle. Hence it is most common comfort assessment criteria for diesel vehicles. Simulations and optimization of it in an early stage of product development cycle is priority for all OEMs. In vehicle idle condition, powertrain is the only major source of Noise and Vibrations. The key to First Time Right Idle NVH simulations and optimization remains being able to optimize all Transfer paths, from powertrain mounts to Driver Ear. This Paper talks about the approach established for simulations and optimization of powertrain forces entering in to frame by optimizing powertrain mount hard points and stiffness. Powertrain forces optimized through set process are further used to predict the vehicle passenger compartment noise and steering vibrations.
Technical Paper

Simulation Based Approach to Improve the Engine Oil Warmup Behavior Using Exhaust Gas During NEDC Cycle

2021-09-22
2021-26-0422
During the cold start conditions engine must overcome higher friction loss, at the cost of fuel penalty till the optimum temperatures are reached in coolant and lubrication circuits. The lower thermal capacity of the lubrication oil (with respect to the coolant) inverses the relation of viscosity with temperature, improves engine thermal efficiency benefit. Engine oil takes full NEDC test cycle duration to reach 90°C. This leads to higher friction loss throughout the test cycle, contributing a significant increase in fuel consumption. Increasing oil temperature reduces viscosity, thereby reducing the engine friction. This helps to identify the focus for thermal management in the direction of speeding up the temperature rise during a cold engine starting. This work aims at the study and experiment of an exhaust recovery mechanism to improve the NEDC fuel economy.
Technical Paper

Optimizing OSRVM Package for Maximizing In-vehicle Visibility

2015-09-29
2015-01-2837
Overall in-vehicle visibility is considered as a key safety parameter essentially mandated due to the increasing traffic scenario as seen in developing countries. Driver side bottom corner visibility is one such parameter primarily defined by A-pillar bottom and outside rear-view mirror (OSRVM). While defining the OSRVM package requirements such as size, position and regulatory aspects, it is also vital to consider other influencing parameters such as position of pillars, waist-line height, and Instrument panel which affect the in-vehicle visibility. This study explains the various package considerations, methods to optimize OSRVM position, shape and housing design in order to maximize the in-vehicle visibility considering the road and traffic conditions. A detailed study on in-vehicle visibility impacted by OSRVM packaging explained and had been verified for the results.
Technical Paper

Optimisation of Scooter Frame for Target Life on 2-Poster Rig with Virtual Simulation

2019-01-09
2019-26-0307
Vehicle frame evaluation at early stages of product development cycle is essential to reduce product turnaround time to market. In conventional approach of virtual validation it is required to evaluate the strength of the vehicle structure to account for the standard Service Load Analysis (SLA) loading conditions. But this paper describes on the strength analysis of scooter frame with derivation of critical static load cases. The critical load cases are extracted from the load-time history while the vehicle was simulated on durability virtual test rigs which is equivalent to proving ground tests. This methodology gives the better accuracy in prediction of stress levels and avoids the overdesign of components based on traditional validation technique. There is significant drop in stress levels using the critical load case approach as compared to conventional load case method.
Technical Paper

New Simulation Methodology for Improved Visual Interaction between Physical Test and CAE in Seat Anchorage Test

2016-02-01
2016-28-0226
For effective occupant protection, automotive vehicle structure needs to be developed for seat anchorage test to prevent the failure of seat anchorages during high speed impacts. Seat anchorages (SA) certification test is mandatory for M & N category vehicles in India. Conventional way of testing automotive vehicle structures for seat anchorage test is using deceleration sled with the help of bungee ropes. Deceleration pulse generated from the physical test is used as a loading input in the current CAE process. With the current CAE method, final deformation of the vehicle structure looks similar to physical test, however, the vehicle visual interactions differ significantly during the deformation event. In the current study, a modified loading methodology is proposed to match both the final deformation as well as vehicle visual interactions. Loading and boundary conditions of physical test were understood in detail with the help of simple free body diagrams.
Technical Paper

Integrated Exhaust Manifold Design & Optimization of it through HCF and LCF Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0168
This paper discusses design and optimization process for the integration of exhaust manifold with turbocharger for a 3 cylinder diesel engine, simulation activities (CAE and CFD), and validation of manifold while upgrading to meet current BS6 emissions. Exhaust after-treatment system needs to be upgraded from a simple DOC (Diesel Oxidation Catalyst) to a complex DOC+sDPF (Selective catalytic reduction coated on Diesel Particulate Filter) to meet the BS6 emission norms for this engine. To avoid thermal losses and achieve a faster light-off temperature in the catalyst, the exhaust after-treatment (EATS) system needs to be placed close to the engine - exactly at the outlet of the turbocharger. This has given to challenges in packaging the EATS. The turbocharger in case of BS4 is placed near the 2nd cylinder of the engine, but this position will not allow placing the BS6 EATS.
Technical Paper

Improving the Clutch Design Robustness by Virtual Validation to Predict Clutch Energy Dissipation and Temperature in Clutch Housing

2021-09-22
2021-26-0329
During the vehicle launch (i.e. moving the vehicle from “0” speed), the clutch would be slowly engaged by the Driver or Transmission Control Unit (in Automatic Transmission/Automatic Manual Transmission vehicle) for smooth torque transfer between engine and transmission. The clutch is designed to transfer max engine torque with min heat generation. During the clutch engagement, the difference in flywheel and gearbox input shaft speed is called the clutch slipping phase which then leads to a huge amount of energy being dissipated in terms heat due to friction. As a result, clutch surface temperature increases consistently, when the surface temperature crosses the threshold limit, the clutch wears out quickly or burns spontaneously. Hence it is crucial to predict the energy dissipation and temperature variation in various components of clutch assembly through virtual simulation.
Technical Paper

Implementation of a Driver-in-the-Loop Methodology for Virtual Development of Semi-Active Dampers

2024-04-09
2024-01-2759
In today’s rapidly evolving automotive world, reduction of time to market has prime importance for a new product development. It is critical to have significant front-loading of the development activities to reduce development time while achieving best in class performance targets. Driver-in-the-loop (DIL) simulators have shown significant potential for achieving it, through real time subjective feedback at preliminary stages of the vehicle development. Recent advances in technology of driving simulators have enabled quite accurate representation steering and handling performance, also good prediction on primary ride and low frequency vibrations. In conventional damper development, the definition of the initial dampers tuning specifications typically requires a mule vehicle, or atleast, a comparable vehicle. However, this approach is associated with protracted iterations that consume substantial time and cost.
Technical Paper

High Performance EGR Cooler Selection and its Fouling Behavior for a HSDI Diesel Engine

2015-01-14
2015-26-0087
Selection of EGR system is very complex for a particular engine application. The performance of the EGR system depends highly on the Cooler Heat Transfer Efficiency. Cooler effectiveness drops over a period of operation due to soot deposition, HC condensation, and fuel quality. This phenomenon is called as Cooler Fouling. Fouling cannot be avoided completely but the level of performance drop over time has to be studied and minimized. The minimum pressure drop and the highest efficiency in fouled condition is the target for selection of a cooler. In this study, various parameter combinations like tube shape and profile, tube length, number of tubes, tube diameter, and pitch of corrugations, which influence the cooler performance were tested. A better understanding of each of its effect on cooler effectiveness and fouling behavior was obtained. The tube shape was changed from rectangular to circular, also from smooth surface to corrugate.
Technical Paper

Headliner Composition Optimization without Compromising the Safety and Performance

2024-01-16
2024-26-0190
Reducing material wherever there is a possibility in automobile industry is inevitable for weight and cost saving. This paper explains about the possibilities of optimizing the material composition of automotive Headliners (also called as Roof liners) without affecting the performance and safety criteria. In this paper, we are targeting at optimizing the individual constituents of a composite Headliner. A conventional Headliner comprises of many sandwich layers of which PU foam shares the major percentage of the composition contributing to 80% of the Headliner thickness. In this paper, we are discussing about the optimization done in Headliner sandwich constituents without affecting the core performance parameters of headliner such as curtain airbag deployment, ergonomic regulations, drop test etc. By incorporating this change, without significant changes in other layers, overall weight reduction of ~24% and overall cost reduction of ~24% is achieved.
Technical Paper

Evaluation of Cost-Effective Method of Improving the Cabin Air Quality Using HVAC case Coating

2022-11-09
2022-28-0452
Among many environments, the motor vehicle cabin micro-environment has been of public concern. Infact Air pollution more harmful to children in cars than outside. Although commuters typically spend only 1-2hrs per day of their time in vehicles, the emissions from various interior components of motor vehicles as well as emissions from exhaust fumes carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure due to their high concentrations inside vehicles’ cabins. This N9 silver ion technology helps significant reduction of microbial & viruses inside the vehicle cabin air. On contact silver will neutralize harmful bacteria on plastic surfaces giving them long lasting freshness and long-term protection. Silver is a natural antimicrobial. That means that microbes-germs can’t survive in the presence of silver ions. Silver ions released from the surface of silver molecules.
Technical Paper

Ergonomic Study of Occupant Seating Using Near-Vertical Posture for Shared Mobility Applications

2020-09-25
2020-28-0519
Transportation system is at the brink of revolution and many new ways of mobility are arising in the market to ease the pressure on the established transportation infrastructure. Many companies and governments around the world are exploring innovative options in the space of shared mobility to reduce the overall carbon footprint. To expedite the adoption of shared mobility in India, it is necessary to make such options comfortable and cost-effective. One of the most effective way to make shared mobility options cost effective is to comfortably increase occupancy per vehicle footprint. This paper aims to evaluate a novel method of occupant seating to identify the maximum number of passengers a vehicle can accommodate without significant impact on occupant comfort. It is assumed that shared mobility options are used for a short duration of commute, and hence the comfort of the seat can be marginally compromised to increase the total number of occupants.
Technical Paper

Diagnosis and Elimination of Disc Brake Groan in a Utility Vehicle

2014-04-01
2014-01-0043
Brake groan noise is resolved without any major change in the design of brake system and vehicle sub-system components in the development phase of a utility vehicle. The groan noise is observed during the end of the stopping of the vehicle under moderate braking. The concerned NVH issue is perceived as unacceptable noise in the passenger compartment. Groan induced vibration is subjectively felt on steering and seat frame. A typical process is established to successfully reproduce the groan which helped in precisely evaluating the effect of modifications proposed. The temperature range of the disc which has the highest probability to produce the groan noise is found out experimentally. The transfer path analysis is carried out to find the path contributions from suspension. Acoustic transfer functions from considered paths are measured with the suspension removed from vehicle.
Technical Paper

DMADV Approach for Engineering Optimization and Quality - Application and Adaptability in Indian Automobile Industry

2017-07-10
2017-28-1930
Indian Automobile Industry has started using Six Sigma for Vehicle Design and process improvement to compete with Global competition. This Paper describes how the Tools of Six Sigma shall be used as an Effective Tool for both redefining the Design and the Process Improvement. This Paper talks on the evolution of DMADV approach in Indian Automobile Industry compared to the related Trends in Other Manufacturing Sectors. The Author describes how the warranty failures in Commercial Segment Vehicle Category which was the selling talk for the Competition was addressed in Leading Indian Automobile OEM. As this Failure was adversely impacting customer satisfaction and no solution seemed forthcoming, top Management indicated to use a radically different approach to solve the problem within a years’ time.
Technical Paper

Computational and Experimental Investigations to Improve Performance, Emissions and Fuel Efficiency of a Single Cylinder Diesel Engine

2015-01-14
2015-26-0099
From International Energy Statistics (IES) survey, China, US and India are top three countries in emitting CO2 emissions. Further, worldwide national governments are focused to control CO2 emissions at source by stringent regulatory limits. OEMs and Research laboratories are working on several technology options such as advanced fuel injection system, optimizing in cylinder combustion system, thermal management and reduced engine friction to meet this legal requirements. In this paper, research work focused on improving combustion system through selection optimum bowl geometry and increasing volumetric efficiency through valve timings, profile and intake system using both 1D and 3D-CFD numerical approach. The main objective of this approach to utilize fossil fuel to its maximum potential in a single cylinder Naturally Aspirated (NA) water cooled engine with CRDI.
Technical Paper

Assessment of Cabin Leakage on Thermal Comfort and Fuel Efficiency of an SUV

2016-04-05
2016-01-0259
The main function of an air conditioning system in a vehicle is to provide the thermal comfort to the occupant at minimum possible energy consumption in all environmental conditions. To ensure the best possible thermal comfort, air conditioning system is optimized on various parameters like heat load, air flow distribution, glass area, trim quality, insulations and cabin leak rate. A minimum cabin leakage is regulatory requirements to ensure the air quality of cabin. Anything above the minimum cabin leak rate ultimately turn into reduced thermal comfort and additional energy consumption. The additional energy consumption to maintain the required thermal comfort in the cabin due to cabin leakage affects the fuel efficiency severely. In the present study, the effect of cabin leakage on fuel efficiency and thermal comfort is studied in details by varying the cabin leakage through mechanical means. The experiments are carried out in normal environmental condition and road condition.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
X