Refine Your Search

Topic

Search Results

Journal Article

Virtual Road Approach for Vehicle Durability Simulations

2013-04-08
2013-01-1165
In current scenario, virtual validation is one of the important phase for any new product development process. The initial step for virtual validation for durability analysis of vehicle is to understand the loads which are transmitted to body from the roads. In current methodology standard 3g load cases are considered. These are worst load cases which show more number of high stress locations on vehicle. In actual vehicle running condition, dynamic loads are coming on vehicle structure. These dynamic loads can be obtained by measuring the loads coming on the vehicle through road load data acquisition system. The use of measured loads posed challenges due to the non-availability of representative mule in the initial phase of vehicle development. To overcome these challenges, Mahindra & Mahindra developed a new approach which enabled the direct substitution of analytically synthesized loads for measured data.
Technical Paper

Vinyl Ester Based SMC Material for Automotive Oil Sump Application

2015-04-14
2015-01-0718
This paper describes vinyl ester based SMC (Sheet molding composite) material for oil sump part in automotive application. This sheet moulding composite is a ready to mould glass-fibre reinforced vinyl ester material primarily used in compression moulding process. This vinyl ester resin is compounded with glass fibre to meet the product functional requirements. Oil sump is a structural component under bonnet that forms the bottommost part of the crankcase and also contain the engine oil before and after it has been circulated through the engine. Generally, metals are preferred material for this application. In this paper, fibre filled vinyl ester based thermoset resin (SMC) material has been explored for oil sump application. They possess excellent properties in terms of tensile strength, modulus, impact strength, dimensional stability, high/low temperature resistance and oil resistance.
Technical Paper

Suspension Components Calculation at Concept Stage to Evaluate the Ride and Handling Characteristics

2021-09-22
2021-26-0082
Vehicle handing and ride are the critical attributes for customers while buying new passenger vehicle. Hence it is very important to design suspension which meets customer expectations. Often tuning of suspension parameters is very difficult at later stage like wheelbase, vehicle center of Gravity and other suspension parameters like roll center heights etc. A parametric mathematical model is built to study the effect of these parameters of vehicle handling and ride attributes at concept stage. These models are used to calculate the suspension ride rates, spring rates and Anti roll bar diameters for meeting target vehicle ride and handling performance. The model also calculates natural frequency of suspension and vehicle for understanding pitch and roll behaviours.
Technical Paper

Scientific Approach for Pickup Cargo Weight Reduction

2024-01-16
2024-26-0192
In this study, the benchmarked-based statistical Light Weight Index (LWI) technique is developed for predicting the world in class optimum weight. For these four statistical Lightweight Index numbers are derived based on the geometrical dimensions. This strategy is used for the target setting. To achieve the target, the Value Analysis approach for Cargo assembly is to redesign and make Refresh Cargo assembly. The organization also benefited directly by reducing the inventory cost and transportation costs because of the deletion of parts and minimizing the assemblies. Vehicle power-to-weight ratio and fuel economy also improved based on cutting weight. The complete case study with details has been mentioned in the work. The weight benefit led to an increase in the profit margin and caters to the difficulty because of the daily increase in the price of raw materials.
Technical Paper

SCV Chassis Performance Optimization Through Parametric Beam Modelling & Simulation

2021-10-01
2021-28-0183
In automotive product development, design and development of the chassis plays an important role since all the internal and external loads pass through the vehicle chassis. Durability, NVH, Dynamics as well as overall vehicle performance is dependent on the chassis structure. Even though passenger vehicle chassis has a ladder frame or a monocoque construction, small commercial vehicle chassis is a hybrid chassis with the cabin welded to the ladder frame. As mileage is critical for sale of SCVs, making a light-weight chassis is also important. This creates a trade-off between the performance and weight which needs to be optimized. In this study, a parametric beam model of the ladder frame & the cabin of the vehicle is created in COMSOL Multiphysics. The structure has been parameterized into the long member & crossmember geometry & sections. The model calculates the first 12 natural frequencies, global stiffness, and weight.
Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

Optimum Solution for Reduction of Clutch Pedal Vibration and Groan Noise Observed During Clutch Pedal Actuation

2021-10-01
2021-28-0169
In emerging markets like India, manual transmission vehicles are still most preferred & contributes to 85% of passenger vehicle sales due to its cost benefit. However, customer expects good NVH behavior for comfortable driving experience in the vehicle to maneuver effortlessly in the highly congested traffic conditions in India. Clutch & its hydraulic release system in manual transmission of IC engines are the significant components which affects the NVH behavior & maneuverability of the vehicle and the driver comfort significantly. This paper focuses on the clutch pedal vibration & groan noise concern observed during clutch pedal actuation in high power density SUV vehicle developed for Indian market. The vehicle had highly efficient & light weight engine which has high engine axial vibrations. Axial vibrations are caused due to engine firing impulses & crankshaft bending causes flywheel axial movement.
Technical Paper

Model-Based Simulation Approach to Reduce Jerk Issue in Power Shuttle Transmission (PST) Tractor

2022-08-30
2022-01-1119
Nowadays, tractors are frequently used with front-end loaders, dozers and backhoes to cater to various non-agricultural and construction application needs. These applications require frequent shifting of gears due to the constant need for a tractor's forward/reverse direction of motion. Hence, the tractors are fitted with a power shuttle transmission (PST) to cater this need. Power-shuttle transmission (PST) development is a design process that incorporates multiple disciplines such as mechanical, hydraulics, controls and electronics. This paper presents a simulation-based approach to model the power shuttle transmission of the tractor. Firstly, individual components of PST are modelled in detail and then integrated with the complete tractor model. For this, GT-Suite has been used as a simulation platform.
Technical Paper

Methodology to Quantitatively Evaluate the Secondary Ride Characteristics of a Vehicle

2017-07-10
2017-28-1959
The Ride Comfort has always been an important attribute of a vehicle that gets trade-off with handling characteristics of a vehicle. However, to cater the growing customer requirements for better ride comfort in a vehicle without compromising on other attributes, evaluating and achieving optimal ride comfort has become a significant process in the vehicle development. In the current engineering capability and virtual engineering simulations, creating an accurate and real time model to predict ride comfort of a vehicle is a challenging task. The qualitative evaluation of ride attributes has always been the proven conventional method to finalize the requirements of a vehicle. However, quantitative evaluation of vehicle ride characteristics benefits in terms of target setting during vehicle development process and in robust validation of the final intended product against its specifications.
Technical Paper

Low Rolling Resistance Tires and Their Impact on Electric Vehicles

2017-07-10
2017-28-1941
This paper details the methodology used to show the importance of Low rolling resistance tires in Electric Vehicles. Fuel efficiency and range is paramount with most of the electric vehicle buyers. Although many people are now becoming aware of low rolling resistance tires but its development started way back in 1990’s. It is always challenging to achieve low rolling resistance in smaller tires of size 12 inch or 13 inch along meeting the other critical vehicle parameters such as ride and handling, NVH, durability and many more. The reduction in rolling resistance can also affect the traction properties of tires. In case of very low rolling resistance tires the traction will be very less but it can badly affect the other vehicle parameters. Selection of tires further depend upon the RWUP (Real World Usage Profile). It means the vehicle is targeted for which region and what is the condition of roads there.
Technical Paper

Implementation of a Driver-in-the-Loop Methodology for Virtual Development of Semi-Active Dampers

2024-04-09
2024-01-2759
In today’s rapidly evolving automotive world, reduction of time to market has prime importance for a new product development. It is critical to have significant front-loading of the development activities to reduce development time while achieving best in class performance targets. Driver-in-the-loop (DIL) simulators have shown significant potential for achieving it, through real time subjective feedback at preliminary stages of the vehicle development. Recent advances in technology of driving simulators have enabled quite accurate representation steering and handling performance, also good prediction on primary ride and low frequency vibrations. In conventional damper development, the definition of the initial dampers tuning specifications typically requires a mule vehicle, or atleast, a comparable vehicle. However, this approach is associated with protracted iterations that consume substantial time and cost.
Technical Paper

High Performance EGR Cooler Selection and its Fouling Behavior for a HSDI Diesel Engine

2015-01-14
2015-26-0087
Selection of EGR system is very complex for a particular engine application. The performance of the EGR system depends highly on the Cooler Heat Transfer Efficiency. Cooler effectiveness drops over a period of operation due to soot deposition, HC condensation, and fuel quality. This phenomenon is called as Cooler Fouling. Fouling cannot be avoided completely but the level of performance drop over time has to be studied and minimized. The minimum pressure drop and the highest efficiency in fouled condition is the target for selection of a cooler. In this study, various parameter combinations like tube shape and profile, tube length, number of tubes, tube diameter, and pitch of corrugations, which influence the cooler performance were tested. A better understanding of each of its effect on cooler effectiveness and fouling behavior was obtained. The tube shape was changed from rectangular to circular, also from smooth surface to corrugate.
Technical Paper

Frictional Power Loss Distribution of Automotive Axles - Experimental Evaluation and Analysis

2021-09-22
2021-26-0483
The given paper presents the main elements of frictional power loss distribution in an automotive axle for passenger car. For reference two different axles were compared of two different sizes to understand the impact of size and ratio of gear and bearings on power loss characteristics. It was observed that ~50% of total axle power loss is because of pinion head-tail bearing and its seals, which is very significant. Roughly 30% of total power loss is contributed by pinion-ring gear pair and differential bearings and remaining ~20% by wheel end bearing and seals. With this study the automotive companies can take note of the area where they need to focus more to reduce their CO2 emissions to meet the stringent BS6, CAFÉ and RDE emission norms.
Technical Paper

Ergonomic Study of Occupant Seating Using Near-Vertical Posture for Shared Mobility Applications

2020-09-25
2020-28-0519
Transportation system is at the brink of revolution and many new ways of mobility are arising in the market to ease the pressure on the established transportation infrastructure. Many companies and governments around the world are exploring innovative options in the space of shared mobility to reduce the overall carbon footprint. To expedite the adoption of shared mobility in India, it is necessary to make such options comfortable and cost-effective. One of the most effective way to make shared mobility options cost effective is to comfortably increase occupancy per vehicle footprint. This paper aims to evaluate a novel method of occupant seating to identify the maximum number of passengers a vehicle can accommodate without significant impact on occupant comfort. It is assumed that shared mobility options are used for a short duration of commute, and hence the comfort of the seat can be marginally compromised to increase the total number of occupants.
Technical Paper

DMADV Approach for Engineering Optimization and Quality - Application and Adaptability in Indian Automobile Industry

2017-07-10
2017-28-1930
Indian Automobile Industry has started using Six Sigma for Vehicle Design and process improvement to compete with Global competition. This Paper describes how the Tools of Six Sigma shall be used as an Effective Tool for both redefining the Design and the Process Improvement. This Paper talks on the evolution of DMADV approach in Indian Automobile Industry compared to the related Trends in Other Manufacturing Sectors. The Author describes how the warranty failures in Commercial Segment Vehicle Category which was the selling talk for the Competition was addressed in Leading Indian Automobile OEM. As this Failure was adversely impacting customer satisfaction and no solution seemed forthcoming, top Management indicated to use a radically different approach to solve the problem within a years’ time.
Technical Paper

Automotive Synchronizer with Asymetric Toothing

2011-04-12
2011-01-0724
In automotive Transmission especially in Manual shift Transmission, a mechanism is provided for smooth and quick shifting of gears known as Synchronizer. A synchronizer mechanism having a Sliding shift sleeve, synchronizer ring, clutch body and clutch body ring as the main components to shift the gears smoothly. A synchronizer ring and Clutch body ring having outer tooth with inclined faces i.e. chamfer on their end facing towards gear shift sleeve, having inclination faces to mesh with the same inclined faces of blocker ring and clutch body ring for smooth shifting with less effort. Generally in cold environment certain forces are acting inside the Transmission to reduce the speed of rotating elements, these force are called drag forces. Mostly these drag force are generated due to high viscosity of transmission oil and large Inertia of masses of rotating elements, bearings and oil seals friction etc..
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Technical Paper

A Study on the Effect of Steering Input Frequency on Transient Lateral Dynamics of Four-Wheeled Passenger Vehicles

2019-01-09
2019-26-0070
Vehicle lateral dynamic response parameters such as yaw velocity, lateral acceleration, roll angle, etc. depend on the nature of steering input. Response parameters vary with the amplitude and frequency of steering input. This paper deals with developing insights into the effect of steering input frequency on transient handling dynamics. For the purpose two SUV segment vehicles with similar curb weight are considered. Vehicles are given pulse inputs of the amplitudes corresponding to 4 m/s2 steady state lateral acceleration and target speeds of 80 kmph and 100 kmph, as recommended in ISO 7401:2011. Steering inputs are executed using a Steering Robot (ABD SR30). Lateral transient dynamic response gains as well as natural frequencies of yaw are studied for 0-2 Hz input frequencies. Several insights are developed, adding to the understanding of transient lateral dynamics and its relationship with steering input.
Technical Paper

A Study on Automotive Sheetmetal Surface Pretreatment: Liquid Activation and Low Temperature Phosphating

2023-05-25
2023-28-1324
Phosphating is the most preferred surface treatment process used for auto body sheet panel before painting due to its low-cost, easy production process, good corrosion resistance, and excellent adhesion with subsequent paint layer. There are different phosphating processes used for ferrous metal like zinc phosphating, iron phosphating, di-cationic & tri-cationic phosphating, etc. Among these phosphate coatings, the best corrosion resistance and surface adhesion are achieved by tri-cationic phosphate coatings (zinc-nickel-manganese phosphate). Many new technologies of phosphating are evolving. Key drivers for this evolution are increasing demand for higher corrosion resistance, multi-metal car body processing in same phosphating bath and sustainability initiatives to reduce the carbon footprints. We have evaluated two of these recent technologies.
Technical Paper

A Parametric Approach of IP Duct Vane Articulation Study for Enhanced Cabin Cool Down Performance

2021-10-01
2021-28-0200
The cabin cool down performance is influenced by heat load, AC system components and Air handling components. The air handling components are AC duct, vane and vent. Design of AC duct vane plays a crucial role in the airflow directivity in cabin which enhances the cabin cool down performance. Simulations are carried out by rotating the vanes manually and requires post process for every iteration. It leads to more time consuming and more number of simulations to achieve the target value. Research articles focusing on automation and optimization of vane articulation studies are scanty. Thus, the objective of this work is to execute the vane articulation study with less manual intervention. A parametric approach is developed by integrating ANSA and ANSYS FLUENT tools. With Direct Fit Morphing and DoE study approach from ANSA delivers the surface mesh model for the different vane angle configurations.
X