Refine Your Search

Topic

Author

Search Results

Technical Paper

Underbody Drag Reduction Study for Electric Car Using CFD Simulations

2015-01-14
2015-26-0211
Electric cars are the future of urban mobility which have very less carbon foot print. Unlike the conventional cars which uses BIW (Body in White), some of the electric cars are made with a space frame architecture, which is light weight and suitable for low volume production. In this architecture, underbody consists of frames, battery pack, electronics housing and electric motor. Underbody drag increases due to air entrapment around these components. Aerodynamic study for baseline model using CFD simulations showed that there was a considerable air resistance due to underbody components. To reduce the underbody drag, different add-ons are used and their effect on drag is studied. A front spoiler (air dam) is used to deflect the incoming air towards sides of the car. A under hood cover for front components, trailing arm cover for trailing arm and rear bumper cover for rear components were used to reduce underbody drag.
Technical Paper

Ultra Low PM, Naturally Aspirated Diesel Engine Development Meeting Off-Highway Tier IV (Final) Emission Norms

2013-01-09
2013-26-0110
To meet stringent US EPA - TIER IV final emission norms, the diesel engine manufacturers are using various technology approaches. These approaches are varying from advanced in-cylinder combustion strategies to sophisticated exhaust after-treatment technologies. Generally, the proven technology concepts such as Common Rail System (CRS), efficient Turbocharged-Intercooled (TCI), and controlled-cooled EGR along with DOC-DPF in after treatment are used for emission controls. However, this approach will increase the engine cost in addition to the Packaging challenges for the existing vehicle layouts. This paper describes the successful attempt to meet US EPA TIER IV final (<37 kW power category) emission norms on a 2.7 l, Naturally Aspirated (NA) diesel engine for off-highway application. Use of high pressure CRS system, moderate Excess Air Ratio (λ) and optimum engine swept volume selection helped to retain fuel consumption at par with interim TIER IV engine.
Technical Paper

Study and Analysis of Dynamic Seat Pressure Distribution by Human Subjects during Vehicle Running State on Test Tracks

2024-01-16
2024-26-0354
The purpose of this study is to conduct dynamic seat pressure mapping on vehicle seats during its operation on different test tracks under ambient environmental conditions for a defined speed. The test track comprises of pave roads, high frequency track, low frequency track and twist track. The variations in pressure distribution on seat during diverse road load inputs help to understand the seat cushion and back comfort for unique percentiles of human subjects ranging from 50th to 95th percentile population. For conducting the study, a sport utility vehicle (SUV) loaded with leatherette seats has chosen. Totally six participants (human subjects), five male and one female selected for the study based on their BMI (Body mass index) and body morphology. Pressure mats suitable for taking dynamic load inputs and able to log the data at a defined sampling rate mounted on seats and secured properly. The pressure mats should cover the seat cushion, bolster areas and back seat completely.
Technical Paper

Structural Development and Improvement of SCR Assembly Design for Exhaust after Treatment System of a Construction Equipment off Highway Vehicle

2024-01-16
2024-26-0091
Construction equipment off highway vehicles are heavy industry vehicles that run on diesel engines. To meet the emission norms, these engines have the Exhaust After Treatment System (EATS) which includes two primary subassemblies, i.e., a Diesel Oxidation Catalyst (DOC) subassembly to reduce the HC and CO emissions and a Selective catalytic Reduction (SCR) subassembly to reduce NOx emissions. Because of the excessive vibrations in the engine and continuous heavy-duty usage of the Construction equipment, any failures in the EATS system leading to escape of exhaust gas is a statuary non-compliance. Hence, understanding the effect of engine vibrations and proposing a cost-effective solution is paramount in designing the EATS system including the SCR assembly. A field-testing failure of an SCR assembly has been taken in consideration for this study.
Technical Paper

Strategy to Meet Euro IV Emission Norms on Common Rail Sports Utility Vehicle

2007-04-16
2007-01-1082
One of the key factors driving the automotive world is emission regulations. Zero emissions, clean engine concept are some buzz words being used extensively in the automotive industry. Stringent emission regulations throughout the world mean that automotive manufacturers have to pay attention to minimizing engine out emissions. Electronic engine management systems allow flexibility in controlling injection parameters & provide a means for optimizing engine performance. This paper presents work carried out on a 2.49L common rail direct injection diesel engine to achieve Euro IV emission targets. Without after-treatment devices, it is difficult for engine management alone to meet Euro IV and further stringent emissions. To overcome this, two type of after-treatment technologies are adopted by OEM's Selective Catalyst Reduction Diesel Particulate Filter Huge amount of research is being done on the application, cost aspect and availability of component samples for series production.
Technical Paper

Sensitivity Analysis and Experimental Verification of Automotive Transmission Gearbox Synchronizer Gear Shift Quality

2020-09-25
2020-28-0386
Synchronizer is the key element for the smoother gear shift operation in the constant mesh transmission. In the gear shift operation, the double bump occurs at the contact between the sleeve teeth and the clutch body ring teeth after the full synchronization. The double bump is random in nature and the dynamics is difficult to predict. The double bump gives a reaction force to the driver and affects the gear shift quality. This paper focus on the sensitivity analysis of the synchronizer ring index percentage and the clutch body ring asymmetric chamfer angle to reduce the occurrence and magnitude of the double bump. The system level simulation model is developed using 1D simulation tool. The modeling is done after complete declutching event so that there is no power supply to the transmission. The model can handle both upstream and downstream reflected inertia depending upon the gear shift event.
Technical Paper

Prediction of Engine Thermal Behavior during Emission Cycle Using 1D Four Point Mass Model

2016-04-05
2016-01-0197
The traditional approach of engine thermal behavior of engine during startup has largely been dependent on experimental studies and high fidelity simulations like CFD. However, these techniques require considerable effort, cost and time. The low fidelity simulations validated with experimental results are becoming more popular due to their ease in handling the several parameters such as cost effectiveness and quick predictive results. A four point mass model of engine thermal behavior during cold start has been developed to study the engine warm up temperature behavior. The four point mass model considers the lumped mass of coolant, mass of engine directly associated with the coolant, mass of engine oil and mass of engine directly associated with the engine oil. The advantage of four point model is to predict the coolant temperature as well as lubricant temperature during the transient warm up cycle of the engine.
Technical Paper

Novel Approaches for Model-Based Development - Part I: Developing a Real-World Driver Model

2016-04-05
2016-01-0323
OEMs these days are focusing on front loading the activities to Virtual Test Environment (VTE) based development owing to high development cost and complexity in achieving repeatability during testing phase of vehicle development,. This process not only helps in reducing the cost and time but also helps in increasing the maturity and confidence level of the developed system before actual prototype is built. In the past, extensive research has happened for increasing the fidelity of VTE by improving plant model efficacy which involves powertrain and other vehicle systems. On the other hand, improving the precision of driver model which is one of the most complex nonlinear systems of virtual environment still remains a challenge. It is apparent that various drivers show different behavior in real world for a given drive profile. While modelling a driver for a VTE, the real world driver attributes are seldom considered.
Technical Paper

Migration Phenomenon in Gear Teeth of Hypoid Crown Wheels (Ring Gears) - Controlling and Eliminating the Same in Manufacturing

2016-02-01
2016-28-0214
The paper talks about the migration phenomenon that is observed in gears. The phenomenon discussed here is that observed on hypoid gears which due to their high spiral angles cause the issue to be more sensitive, but the analogy to other gears is applicable. Mahindra manufactures hypoid gear sets for its axles in-house that go on a wide range of its products; with performance benefits also come the stringent quality requirements for hypoid gear sets. Migration is the phenomenon that causes the furling or unfurling of individual gear teeth with respect to each other. This in effect causes the circular tooth spacing between two teeth to become non-uniform. This has a direct effect on the performance of the mated gear set.
Technical Paper

Low Temperature Thermal Energy Storage (TES) System for Improving Automotive HVAC Effectiveness

2015-04-14
2015-01-0353
The prime focus of automotive industries in recent times is to improve the energy efficiency of automotive subsystem and system as whole. Harvesting the waste energy and averaging the peak thermal loads using thermal energy storage (TES) materials and devices can help to improve the energy efficiency of automotive system and sub-system. The phase change materials (PCM) well suit the requirement of energy storage/release according to demand requirement. One such example of TES using PCM is extended automotive cabin comfort during vehicle idling and city traffics including start/stop of the engine at traffic stops. PCM as TES poses high density and capacity in thermal energy storage and release. It is due to latent heat absorption and release during phase change. Generally the latent heat of a material compare to it sensible heat is much higher, almost an order of 2. For example, latent heat of ice is almost 160 times higher than sensible heat for a kelvin temperature rise of ice.
Journal Article

Lithium Ion Battery for Hybrid and Electric Mobility under Indian Ambient Conditions - A Perspective

2012-09-10
2012-01-1611
Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), Extended Range Electric Vehicles (EREVs), Battery Electric Vehicles' (BEVs) development is gaining traction across all geographies to help meet ever increasing fuel economy regulations and as a pathway to offset concerns due to climate change and improve the overall green quotient of automobiles. These technologies have primarily shifted towards Li-ion batteries for Energy Storage (due to energy density and mass). In order to make actual business sense of these technologies, of which, battery is a major cost driver, it is necessary for these batteries to provide similar performance and life expectancy across the operating and soak (storage) range of the vehicles, as well as provide the requirements at a competitive cost.
Technical Paper

Intelligent Exhaust Gas Recirculation Governing for Robust BS-III Compliant 2.5 l Mechanical Pump Drive Diesel Vehicle

2013-01-09
2013-26-0052
October 2010 has brought major change over in Indian Auto Industries, with all India going BS-III Emission compliant (Metro with BS-IV Emission norms). During that time majority of the utility segment vehicles were having diesel engine with simple mechanical fuel injection system. To make these vehicles BS-III compliance cost effectively, with same fuel economy and reliability, was a challenging task. To enable this, Exhaust Gas Recirculation (EGR) through simple pneumatic EGR valve was the optimum technique. The EGR valve was controlled by means of simple Electronic Control Unit (ECU). Limitations of mechanical diesel fuel injection pump, stringent emission regulations, coupled with production constraints and variations, calls for robust control logics for governing EGR. The present work describes the robust strategies and logics of intelligent EGR governing of a 2.5 l, four Cylinder turbocharged, mechanical pump diesel engine for a BS-III compliant multi utility vehicle.
Technical Paper

Integration and Packaging for Vehicle Electrification

2015-01-14
2015-26-0115
In current scenario importance of fuel efficient vehicles, lesser emissions & energy efficiency are the major considerations for any vehicle manufacturer. To meet these expectations vehicle manufacturer are exploring alternate powertrains to reduce emissions and produce better fuel efficient vehicles. For any vehicle manufacturer component cost, weight and package volume are the major driving factors for success. This is even true for latest upcoming hybrid and electric vehicles as well. To gain advantage and introduce products faster, OEMs are inclined to electrify their existing platforms to compete with other manufacturers. To convert existing vehicles into hybrid vehicles, all the major components like e machine, High voltage battery, power electronics etc. needs to be carefully packaged along with existing components in the same package space.
Technical Paper

Intake System Design Approach for Turbocharged MPFI SI Engine

2011-01-19
2011-26-0088
The automotive industry is currently facing the challenge of significantly stringent requirements regarding CO₂ emission and fuel economy coming from both legislations and customer demand. Advanced engine technologies play a vital role for downsizing of gasoline engine. The development of key design technologies for high efficiency gasoline engines is required for the improvement of competitive power in the global automobile industry. This paper focused on effect of geometry of intake manifold of gas exchange process and consequently the performance of the engine. Specially, the optimal design technologies for the intake manifold and intake port shape must be established for high performance, increasingly stringent fuel economy and emission regulations. Space in vehicle or packaging constraints and cost are also important factors while consideration of the design.
Technical Paper

Innovative Method of Calibration to Meet BS4 Emission with Optimized Fuel Economy and Noise in a MPV with 2.5Lit Common Rail Diesel Engine

2011-01-19
2011-26-0028
In today's fast growing automobile world, the Emission limits are stringent; customer expectations of vehicle performance and Fuel economy are more. Achieving these parameters for the given engine are challenging task for any automobile engineers. BS4 Emission limits are 50% more stringent than BS3 limits and from April 2010 onwards, all passenger cars which will be selling in 13 metro cities in India should be BS4 emission compliant. In this paper, we have described how BS4 limits were achieved in a MPV with 2.49 l, 70kW Common Rail Direct Injection Turbocharged Diesel engine, with push rod. During Emission development, the following processes were followed to meet BS4 emission limits without sacrificing the engine performance, Fuel Economy and Noise. Selecting suitable hardwares like Turbocharger, EGR cooler at engine level to reduce NOx and Unburned Hydrocarbon Emissions with best Brake specific fuel consumption.
Technical Paper

In-house Design and Development of Pedestrian Protection Test Rig

2013-01-09
2013-26-0021
Regulations on pedestrian safety have been introduced globally since the year 1990 and in India it will have to be met around the year 2016. Process of making vehicle compliant to this regulation requires rigorous design development and testing. Testing involves propelling head-forms (Child and Adult) on bonnet at 35 km/h and 40 km/h and leg-forms (Upper and Lower) on bumper at 40 km/h according to the different National / International / NCAP regulatory requirements A pedestrian protection test rig has been indigenously designed and developed in-house to perform pedestrian protection impact testing in-house. The paper describes the salient features of the pedestrian protection test rig, its functioning, operation and process of acquiring the data for determination of the values required by crash safety regulations.
Technical Paper

Hardware and Combustion Optimization Strategy to Reduce Engine Out Emissions for BS V Limits

2015-01-14
2015-26-0018
With growing need for air quality improvement the emission norms are becoming stringent than ever, triggering a challenge for OEMs. This is because selection of appropriate technology to meet stringent emission standard and engine performance has to be ensured with improved fuel efficiency, and control cost. To comply with future emission standards, intensive efforts are required to optimize the overall engine out emissions with reduce dependency on exhaust after treatment systems. This paper highlights about strategies employed in developing BS V emissions compliant engine for SUV application. The authors have assumed the limits of EURO 5 emission norms as equivalent to BS5 for this purpose. An existing BS IV compliant engine is selected as a base engine and engine out emission targets were defined considering certain conversion efficiency for the after treatment system.
Technical Paper

Generating a Real World Drive Cycle–A Statistical Approach

2018-04-03
2018-01-0325
Drive cycles have been an integral part of emission tests and virtual simulations for decades. A drive cycle is a representation of running behavior of a typical vehicle, involving the drive pattern, road characteristics and traffic characteristics. Drive cycles are typically used to assess vehicle performance parameters, perform system sizing and perform accelerated testing on a test bed or a virtual test environment, hence reducing the expenses on road tests. This study is an attempt to design a relatively robust process to generate a real world drive cycle. It is based on a Six Sigma design approach which utilizes data acquired from real world road trials. It explicitly describes the process of generating a drive cycle which closely represents the real world road drive scenario. The study also focuses on validation of the process by simulation and statistical analysis.
Technical Paper

Gear Shift Quality Enhancement Using Sensitivity Analysis

2020-09-25
2020-28-0387
The global automotive industry is growing rapidly in recent years and the market competition has increased drastically. The engines with high torque delivery and deeper transmission ratios has become more and more common for a pleasant drivability experience. In a market highly driven from a comfort and an economic point of view, it is essential to develop a transmission and its components in an optimal way. One of the Unique Selling Point (USP) of a vehicle is the gear shift quality & it is highly important to have an optimum shift quality for an enhanced customer experience. Synchronizer plays a vital role for gear shifting performance in manual gearbox without any shifting assistance. The primary function of a synchronizer is to reduce the RPM difference between two gears before gear shifting with minimum time.
Technical Paper

Fuel Economy Measurement in Small Commercial Vehicles with Sub 1L BS6 Diesel Engines an Innovative Approach to Accurately Measure Fuel Economy

2022-03-29
2022-01-0575
In developing countries, the commercial vehicle industry is one of the key drivers for economic growth. The commercial vehicle industry in India is expected to reach 11,80,000 units by 2025 with a CAGR of 18% from CY 2020 to CY 2025 [1]. In the price sensitive segment of small commercial vehicles, it is imperative to incorporate accurate fuel economy measurement techniques during product development stage to deliver maximum value to the customer. In this approach, measuring the fuel consumption of small commercial vehicles in real world driving conditions in real time is one of the most critical aspects in engine calibration development and fine tuning. One of the challenges in measuring fuel consumption in sub 1 liter diesel engines is the very low fuel flow rate in the fuel feed line which keeps varying as per the driver demand.
X