Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermodynamic Study of Turbocharger Matching and Combustion Optimization for Better Low End Torque and High Speed Power

2016-02-01
2016-28-0015
Diesel Engines are known for its low fuel consumption coupled with high specific power output. Downsizing the engines with turbocharging and common rail injection technologies are the recent trends in improving the efficiency and performance of diesel engines. It is very challenging to match the torque targets at low speed and power targets at high speed range of a diesel engines due to system hardware limitation. Torque at lower engine speed will improve a greater extent to the drivability of a vehicle. Formation of black smoke is a major problem in lower engine speeds due lack of air availability. The use of variable geometry, two stage turbocharging and four valves per cylinder are some of the solutions which make the task simpler, also involves additional cost and fundamental design changes. At the same time commonly used waste gate turbocharger for boosting the airflow, fails to deliver required air flow at lower engine speeds.
Technical Paper

Subjective and Objective Steering Feel Evaluation of Compact SUV Electric Power Steering System Using Hardware in the Loop Simulation

2021-09-22
2021-26-0080
Hardware-in-the-loop (HIL) test benches are indispensable for the development of modern vehicle dynamics controllers (VDCs). They can be regarded as a standard methodology today, because of the extremely safety critical nature of the multi-sensor and multi-actuator systems used in vehicle dynamics control. The required high quality standards can only be ensured by systematic testing within a virtual HIL environment before going into a real car. The steering system is an important aspect of the automobile from operational safety and driver enjoyment perspectives. Current Problem/Opportunity is realistic subjective steering feel prediction before vehicle build. And upfront predict the handling characteristics more accurately with subjective feel before proto build. Current Issue is difficult to convert the objective data into subjective feel and difficult to incorporate the nonlinear steering characteristics with hysterics, friction and power assist curves using virtual simulation.
Technical Paper

Study on Vehicle Spin Tendency during Braking on Differential mu Surfaces in Four Wheeled Automobile Vehicle

2019-09-15
2019-01-2114
A four-wheeled automobile during braking event in which left and right wheels of the vehicle are on different mu surfaces, has high chances of experiencing spin, which may lead to stability issues on vehicle. This paper intends to provide a mathematical approach to predict the deceleration at which vehicle will spin during braking in a differential mu surface, and determine the effect of influencing parameters on the extent of the vehicle spin tendency. This paper also provides a correlation between theoretical vs actual decelerations for vehicles to exhibit vehicle spin tendency. This paper helps in providing sufficient aid/tool for system designer to predetermine the vehicle spin at early level of system designs and make necessary amendments at initial stage of prototype development rather than late changes, to create a product which gives safe driving experience.
Technical Paper

Side Door Hinge Axis Deviation and Skewness Study on the Door Closing Effort

2023-04-11
2023-01-0610
The side door closing effort is one of the main evaluating parameters which demonstrates the build quality of the vehicle. The side door hinge axis inclination is one of the key attributes that affect the side door closing effort. Commonly, the hinge axis is inclined in two directions of a vehicle to have necessary door rise during the door opening event. Due to the process and assembly variations in the door assembly, the upper and lower hinge axis of the side door deviates from the design axis. In this paper, the deviations in the side door hinge axis and its effects on the side door closing velocity is discussed. The deviations of the side door hinge axis are studied with a coordinate measuring machine. The side door closing velocity of the vehicle is measured with the velocity meter. The study revealed that side door closing velocity is increasing with an increase in the deviation of the top and bottom door hinge axis from the design hinge axis.
Technical Paper

Reduction of Emissions and Noise Variations by Adjustment of Fuel Injection Quantity

2019-10-11
2019-28-0002
Fuel injection system is a very sensitive structure deciding the optimum quantity of fuel to be injected for combustion process with acceptable accuracy. Learning of fuel quantity with respect to injection type, duration, number of injections requires proper correction values in order to reduce the variation which would result in dissimilar emissions and performance. Deviation of injection quantities are inevitable due to the variations in production tolerance of the injectors. This study focuses on the maximum reduction in fuel quantity which avoids deviation of soot emissions with three different sets of injectors statistically deviating from the ideal pilot fuel quantity. Three sets of injectors deviating from the mean value were chosen and named as Min sample, Mean sample and Max sample. Min sample was with lower injection quantity than the actual and max sample was with higher injection quantity than actual quantity.
Technical Paper

Reduction of Diesel Engine Combustion Noise through Various Injection Strategies

2019-01-09
2019-26-0211
The contribution of engine borne noise is the major source of vehicle noise in diesel powered vehicles. The engine noise can be minimized by modification of engine components design and also with different acoustic abatement techniques. The research activities were carried out on 4-cylinder CRDe engine for SUV application. All the emission and performance parameters along with combustion noise was captured continuously for all the part load points from 1000 RPM to 2750 RPM with respect to the different road conditions and driving cycle. This paper targets on reducing the combustion noise at the noise prone zones only on the basis of the injection strategies ensuring no ill effect on the emissions and fuel economy. The first step was the reduction of rail pressure which helped noise levels to be reduced by almost 6 dB at noise zones. Main injection timing retardation was tried at all possible zones which influenced in considerable noise reduction at various zones.
Technical Paper

Realistic Electric Motor Modelling for Electric Vehicle Performance Prediction

2021-09-22
2021-26-0152
Costlier engine exhaust gas treatment systems as a result of stringent emission norms and increasing awareness about industrial effects on climate have pushed the automotive industry around the globe to shift its focus from fossil fuel driven vehicles to electrically powered ones. While Battery Electric Vehicles (BEVs) have some problematic issues such as lower range, lesser energy density and higher cost owing to not fully mature battery technology, they do provide some benefits such as lower carbon footprint and simpler transmission systems. The torque and power characteristics vary greatly between IC engines and electric motors. The longitudinal dynamics of a vehicle depends greatly on the nature of its powertrain. As a result, new challenges have emerged for simulation engineers who were until very recently accustomed only to IC engine driven vehicles.
Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

Prediction of Oil Flow inside Tractor Transmission for Splash Type Lubrication

2019-01-09
2019-26-0082
This study introduces a method to examine the flow path of the lubricant inside a transmission housing of a tractor. A typical gearbox has several loads bearing elements which are in relative sliding motion to each other which causes heat to be released. The major sources of friction as well as heat are the meshing teeth between gears (sun/planet, planet/ring & power/range drive gear), thrust washers, thrust bearings and needle roller bearings. The churning of oil performs the vital function of both lubricating these sliding interfaces and cooling these sources of heat, thereby preventing failure of the gearbox. In this paper, we have applied VOF multiphase flow model and sliding meshing to simulate the fluid flow during splashed lubrication within a mating gear box. Lubrication oil dynamics and oil surface interaction with the air is modeled using VOF multiphase approach.
Technical Paper

Parametric Investigations on the Performance of Diesel Oxidation Catalyst in a Light Duty Diesel Engine - An Experimental and Modelling Study

2019-01-09
2019-26-0299
In order to comply with the stringent future emission mandates of automotive diesel engines it is essential to deploy a suitable combination of after treatment devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNox converter (Lean NOx Trap (LNT) or Selective Catalytic reduction (SCR) system). Since arriving at a suitable strategy through experiments will involve deploying a lot of resources, development of well-tuned simulation models that can reduce time and cost is important. In the first phase of this study experiments were conducted on a single cylinder light duty diesel engine fitted with a diesel oxidation catalyst (DOC) at thirteen steady state mode points identified in the NEDC (New European Driving cycle) cycle. Inlet and exit pressures and temperatures, exhaust emission concentrations and catalyst bed temperature were measured. A one dimensional simulation model was developed in the commercial software AVL BOOST.
Technical Paper

Parametric Calculation and Significance of Engine Dynamic Torque in Performance Benchmarking of a Vehicle

2019-10-11
2019-28-0028
The automotive industries around the world is undergoing massive transformation towards identifying technological capabilities to improve vehicle performance. In this regard, the engine dynamic torque plays a crucial role in defining the transient performance and drivability of a vehicle. Moreover, the dynamic torque is used as a visualization parameter in performance prediction of a vehicle to set the right engineering targets and to assess the engine potential. Hence, an accurate measurement and prediction of the engine dynamic torque is required. However, there are very few methodologies available to measure the engine dynamic torque with reasonable accuracy and minimum efforts. The measurement of engine brake torque using a torque transducer is one of the potential methods. However, it requires a lot of effort and time to instrument the vehicle. It is also possible to back-calculate the engine torque based on fuel injection quantity and other known engine parameters.
Technical Paper

Optimized In Cylinder NOx Reduction Strategy for Meeting BSVI Emission Limits

2019-01-09
2019-26-0142
The tough emission limits of BSVI norms with very low levels of NOx and PM emissions presents major techno economic challenges for the automobile industry. Combined efforts of pollutants reduction by combustion modification as well as the exhaust after treatment devices could only facilitate to achieve the desired emission targets. selective catalytic reduction technology is a mandatory system which uses ammonia from the aqueous urea solution to react with NOx forming nontoxic by products. The cost spent on aqueous urea solution in addition to the cost of BSVI diesel encounters high operating cost for the vehicle. NOx reduction by SCR too requires adequate quantity of ammonia from the AdBlue. Hence sensible utilization of DEF is essential for reduced running cost of the SCR system. SCR efficiency is higher for higher exhaust temperature and it requires minimum exhaust temperature above which only it operates.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
Technical Paper

Non-Invasive Real Time Error State Detection for Tractors Using Smart Phone Sensors & Machine Learning

2019-01-09
2019-26-0217
Condition Monitoring is the process of identifying any significant change in operating parameters of a machine, which can be indicative of a failure in future. This paper discuss a non-invasive condition monitoring methodology for sensing and investigating the problems which could be identified by noise and vibrations. This could be an easy solution for predicting failures in tractors which are operational in the field. An example of engine tappet is used to demonstrate the methodology. A disturbed setting causes a distinguishable noise, referred to as “tappet rattle”. Android smartphones (with inbuilt sensors - accelerometer, gyroscope and microphone) are used to record noise and vibration from tractors in good condition as well as in disturbed condition. Time series data analysis is done to extract relevant features and then Fourier Transform is applied to the signals for extracting frequency domain signatures.
Technical Paper

Multi-Objective Optimization to Improve SUV Ride Performances Using MSC.ADAMS and Mode Frontier

2018-04-03
2018-01-0575
Ride is an important attribute which must be accounted in the passenger segment vehicles. Excessive H point acceleration, Steering wheel acceleration, Pitch acceleration can reduce the comfort of the driver and the passengers during high frequency and low frequency rough road events. Excessive Understeer gradient, roll gradient, roll acceleration and Sprung mass lift could affect the Vehicle driver interaction during Steady state cornering, Braking and Step steer events. The concept architecture of the vehicle plays an important role in how comfort the vehicle will be. This paper discusses how to improve SUV ride performances by keeping handling performance attributes same or better than base vehicle. Multi Objective Optimization was carried out by keeping spring, bushing and damper characteristic as the design variables to avoid new system or component development time and cost.
Technical Paper

Methodology to Recognize Vehicle Loading Condition - An Indirect Method Using Telematics and Machine Learning

2019-01-09
2019-26-0019
Connected vehicles technology is experiencing a boom across the globe. Vehicle manufacturers have started using telematics devices which leverage mobile connectivity to pool the data. Though the primary purpose of the telematics devices is location tracking, the additional vehicle information gathered through the devices can bring in much more insights about the vehicles and its working condition. Cloud computing is one of the major enabled for connected vehicles and its data-driven solutions. On the other hand, machine learning and data analytics enable a rich customer experience understanding different inferences from the available data. From a fleet owner perspective, the revenue and the maintenance costs are directly related to the usage conditions of the vehicle. Usage information like load condition could help in efficient vehicle planning, drive mode selection and proactive maintenance [1].
Technical Paper

Method Development to Virtually Validate Farm Tractor Skid for Front End Loader Application

2019-01-09
2019-26-0080
In farm tractors, front end loaders are becoming popular attachments for primarily material handling such as loading, moving and unloading of woodchips, sand, gravels etc. It is also used for some severe load application such as tree uprooting and ripping operation which requires validation of loader frame and tractor as well. To validate the design, a standard pull-push test is carried out on tractor with loader in a laboratory. In this test front loader bucket is pushed against a rigidly clamped fixture with full engine throttle and maximum hydraulic cylinder pressure of loader. To avoid surprise failures during the test, a virtual simulation method needs to be developed and validated. In this paper, a method has been proposed by authors for the above objective. A multi-body dynamics model of tractor with loader is created in MSC ADAMS and actual event is simulated using test loads & boundary conditions.
Technical Paper

Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

2023-04-11
2023-01-0598
Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model.
Technical Paper

Improvement of SCR Thermal Management System and Emissions Reduction through Combustion Optimization

2022-12-23
2022-28-0482
Achieving higher emission norms involves various techniques and it has always been a challenging task on meeting the same. Improving the exhaust temperature is indispensable in order to enhance better conversion efficiency on the after-treatment systems. This paper clearly investigates on the various strategies involved to improve the exhaust temperatures of selective catalytic reduction and post injection strategies to meet the emission norms. On the basis of MIDC operation, key load points were selected and split injections with three pulses were implemented. The variation of both the post injection timing and quantity were performed in this paper in order to evaluate the optimum output. The effect of post injection timing and quantity variation on hydrocarbon emissions, carbon monoxide, diesel oxidation catalyst temperatures was observed on all load points. The above strategy was also evaluated on generating the pressure crank angle data.
Technical Paper

Importance of Metallurgical Properties to Prevent Shaft Failures in Off-road Vehicle Validation

2023-05-25
2023-28-1319
Globally, automotive sector is moving towards improving off-road performance, durability and safety. Need of off-road performance leads to unpredictable overload to powertrain system due to unpaved roads and abuse driving conditions. Generally, shafts and gears in the transmission system are designed to meet infinite life. But, under abuse condition, it undergo overloads in both torsional and bending modes and finally, weak part in the entire system tend to fail first. This paper represents the failure analysis of one such an incident happened in output shaft under abuse test condition. Failure mode was confirmed as torsional overload using Stereo microscope and SEM. Application stress and shear strength of the shaft was calculated and found overstressing was the cause of failure. To avoid recurrence of breakage, improvement options were identified and subjected to static torsional test to quantify the improvement level.
X