Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Validation of Gearbox Breather by CFD Simulation and Correlation with Testing

2021-09-22
2021-26-0321
Gearbox power transfer efficiency is a major factor in overall powertrain efficiency of a passenger vehicle. With rapidly changing emission and fuel efficiency regulations, there is a push to increase the gearbox efficiency to improve the overall fuel economy of the vehicle. In case of an existing gearbox, efficiency can be improved by using the low viscosity lubrication oil. Despite a benefit in increasing the gearbox efficiency, lowering down the viscosity of lubrication oil gives rise to few challenges with respect to its performance. One of these challenges is breather performance which defines that transmission oil should not come out of breather pipe in some pre-defined conditions during gearbox operation. As this validation is being carried out on proto parts when the complete system is ready, failure to satisfy the defined criteria for breather performance can lead to multiple trials.
Technical Paper

Vehicle Cold Start Mode Fuel Economy Simulation Model Making Methodology

2019-04-02
2019-01-0898
The air pollution and global warming has become a major problem to the society. To counter this worldwide emission norms have become more stringent in recent times and shall continue to get further stringent in the next decade. From OEMs perspective with increased complexity, it has become a necessity to use simulation methods along with model based systems approach to deal with system level complexities and reduce model development time and cost to deal with the various regulatory requirements and customer needs. The simulation models must have good correlation with the actual test results and at the same time should be less complex, fast, and integrable with other vehicle function modelling. As the vehicle fuel economy is declared in cold start condition, the fuel economy simulation model of vehicle in cold start condition is required. The present paper describes a methodology to simulate the cold start fuel economy.
Technical Paper

Valve Opening and Closing Event Finalization for Cost Effective Valve Train of Gasoline Engine

2019-04-02
2019-01-1191
With more stringent emission norm coming in future, add more pressure on IC engine to improve fuel efficiency for survival in next few decades. In gasoline SI (spark ignition) engine, valve events have major influence on fuel economy, performance and exhaust emissions. Optimization of valve event demands for extensive simulation and testing to achieve balance between conflicting requirement of low end torque, maximum power output, part load fuel consumption and emission performance. Balance between these requirements will become more critical when designing low cost valve train without VVT (Variable valve timing) to reduce overall cost of engine. Higher CR (Compression ratio) is an important low cost measure to achieve higher thermal efficiency but creates issue of knocking thereby limiting low speed high load performance. The effective CR reduction by means of late intake valve closing (LIVC) is one way to achieve higher expansion ratio while keeping high geometric CR.
Technical Paper

Thermal Radiation Heat Transfer Model and Its Application for Automobile Exhaust Components

2016-02-01
2016-28-0051
Shielding vehicle underbody or engine room components from exhaust heat is becoming a difficult task with increasing packaging constraints, which lead to the proximity of components with high temperatures of the exhaust systems. Heat insulators are provided to protect various components from exhaust system parts. Generally the requirement of heat insulators are fixed on the basis of benchmarked temperatures measured on vehicles with similar layout, during the initial phase of vehicle design. Also various CFD techniques are available to predict the surface temperatures on components in order to determine the necessity of a heat insulator. The aforementioned techniques use radiation and convection heat transfer effects on a complete vehicle model and the overall process generally takes considerable time to provide the results. This paper deals with a theoretical approach to predict the temperatures on nearby components due to exhaust system heat.
Technical Paper

Study to Improve Engine Efficiency by Reducing Backpressure

2023-04-11
2023-01-0946
Exhaust system of an automobile is primarily employed in automobile to purify exhaust gases and reduce noise due to combustion. However, a side-effect of the above function is the increase in backpressure. As specified in various literatures, an increase in backpressure can lead to a deterioration on engine performance (Power & torque). Benefit of backpressure reduction can be further taken in terms improving the power & torque of engine or improving the fuel economy. With growing concerns related to global warming and CO2 emissions, reducing exhaust back pressure is one of the promising areas in engine design in order to improve the fuel economy of the automobile and achieving carbon neutrality targets. However, reducing the back pressure generally tends to deteriorate the noise attenuation performance of the Exhaust system.
Technical Paper

Study of Parameters Affecting the Impact Performance of an Alloy Wheel and Noble Approach Followed to Improve the Impact Performance

2015-04-14
2015-01-1514
A typical wheel development process involves designing a wheel based on a defined set of criteria and parameters followed by verification on CAE. The virtual testing is followed by bench level and vehicle level testing post which the design is finalized for the wheel. This paper aims to establish the learning which was accomplished for one such development process. The entire wheel development process had to be analyzed from scratch to arrive at a countermeasure for the problem. This paper will not only establish the detailed analysis employed to determine the countermeasure but also highlight its significance for the future development proposals. The paper first establishes the failure which is followed by the detailed analysis to determine the type of failure, impact levels and the basic underlying conditions. This leads to a systematic approach of verification which encompasses the manufacturing process as well as the test methodology.
Technical Paper

Study of Effect of Variation in Micro-Geometry of Gear Pair on Noise Level at Transmission

2015-01-14
2015-26-0130
Gear noise and vibration in automobile transmissions is a phenomenon of great concern. Noise generated at the gearbox, due to gear meshing, also known as gear whine, gets transferred from the engine cabin to the passenger cabin via various transfer paths and is perceived as air borne noise to the passengers in the vehicle. This noise due to its tonal nature can be very uncomfortable to the passengers. Optimizing micro-geometry of a gear pair can help in improving the stress distribution on tooth flank and reducing the sound level of the tonal noise generated during the running of the gearbox when that gear pair is engaged. This technical paper contains the study of variation in noise level in passenger cabin and contact on tooth flank with change in micro-geometry parameters (involute slope and lead slope) of a particular gear pair. Further scope of study has been discussed at the end of the paper.
Technical Paper

Optimization of Simulation Channels for Inverse FRF Calculation on 6-Axis Road Load Simulator: An Experimental Approach

2017-01-10
2017-26-0303
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors [2]. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper experimental approach has been applied for the optimization of the simulation channels to be used for simulation of normal Indian passenger car on 4 corners, 6-Axis Road Load Simulator. Time domain tests were performed to identify potential simulation channels.
Technical Paper

Model Based Design of xEV Powertrain Controls

2012-01-09
2012-28-0023
Powertrain Control development has gone through many changes in terms of process, tools and practice at all OEM's across the geography. This is mainly driven by increased number of powertrain components for control, shorter development schedules, cost control, and the need to realize the potential of electronic control to increase the performance, efficiency, safety and comfort. With the significant advancement in Powertrain Controls and additions of electronic functions, it has become imperative to automate the controller development process in the V-cycle to reduce the time and make the process more efficient while detecting any logic failures upfront at the early stage of the development cycle. Traditional practices and tools of defining the controls cannot meet new requirements. Model Based Design (MBD) approach is a promising solution to meet the critical needs of powertrain control engineering to define the control logic and validate.
Technical Paper

Mitigation of Abnormal Injector Ticking Noise by Optimization of Hydraulic Operational Modes of Fuel System

2022-10-05
2022-28-0096
With the advent of stricter regulation for tail pipe emission and urge to reduce the carbon foot prints, the engine hardware has undergone through evolutionary changes over the years i.e., boosting, low viscosity engine oil, high pressure fuel injection, cooled EGR, friction reduction, downsizing etc. These technological changes have led to the challenge of increase in radiated noise level from the engine (source) due to increased number of auxiliary drives on engine i.e., Turbo charger, HP fuel pump along with faster combustion & harsher operating conditions. The fuel system is one such system which has become most intricate with operating pressure going above 2000bar in the fuel rail and capability of up to 10 fuel injection per combustion. These changes in hardware could result in abnormal noise generation during specific operating conditions which may result in customer annoyance inside vehicle cabin.
Technical Paper

Methodology for Failure Simulation Using 4 Corner 6 DOF Road Load Simulator of Overhanging Components: An Experimental Approach

2019-11-21
2019-28-2404
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. Due to non- linear nature of the vehicle parts, transmissibility of load is a complex phenomenon. Due to this complex transmissibility, good simulation at wheel center does not always ensure good correlation at all vehicle locations. The low level of correlation is common at the locations like engine mount, horn bracket and other overhanging brackets which are away from the wheel center.
Technical Paper

Integrated Exhaust Manifold Cylinder Head Design Methodology for RDE in Gasoline Engine Application

2020-04-14
2020-01-0169
In recent years, worldwide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFÉ) targets, as set by international regulatory authorities. Many technologies have been already developed, or are currently under study by automotive manufacturer for gasoline engines, to meet legislated targets. In-line with the above objective, there are many technologies available in the market to expand lambda 1 (λ=1) region by reducing fuel enrichment at high load-high revolutions per minute (RPM) by reducing exhaust gas temperature (for catalyst protection) for RDE regulation [1]. Integrated Exhaust Manifold (IEM) is the key technology for the Internal Combustion (IC) for the subjected matter as catalyst durability protection is done by reducing exhaust gas temperatures instead of injecting excess fuel for cooling catalyst.
Technical Paper

Innovative Simulation Approach to Analyze and Add Value to Upcoming Complex Drive Cycle (WLTC) for Passenger Cars

2013-11-27
2013-01-2801
Vehicles which are sold and put into service in a country have to meet the regulations and standards of that country. Every country has a separate regulation and approval procedure which requires expensive design modifications, additional tests and duplicating approvals. Thus, there is the need to harmonize the different national technical requirements for vehicles and form a unique international regulation. With this rationale, the World Forum for Harmonization of Vehicle Regulations of the United Nations Economic Commission for Europe (UN/ECE/WP29) has brought governments and automobile manufacturers together to work on a new harmonized test cycle and procedure which is to be adopted around the world. This lead to the development of Worldwide Harmonized Light Duty Test Procedures (WLTP) and Cycles (WLTC). The test procedure is divided into 3 cycles, depending on a power to mass ratio of the tested vehicle.
Technical Paper

Improving Rough Road NVH by Hydraulic Mount Design Optimization

2020-04-14
2020-01-0422
Vehicle cabin comfort emphasizes a specific image of a brand and its product quality. Low frequency powertrain induced noise and vibration levels are a major contributor affecting comfort inside passenger cabin. Thus, using hydraulic mount is a natural choice. Introduction of lighter body panels coupled with cost effective hydraulic mounts has resulted in some additional noises on rough road surfaces which are challenging to identify during design phase. This paper presents a novel approach to identify two such noises i.e. Cavitation noise and Mount membrane hitting noise based on component level testing which are validated at vehicle experimentally. These noises are encountered at 20~30kmph on undulated road surfaces. Sound quality aspect of such noises is also studied to evaluate the solution effectiveness.
Technical Paper

Implementation of Atkinson Effect for Improved Fuel Efficiency of Gasoline Engine Using 1-D Simulation Software and its Validation with Experimental Data

2021-09-22
2021-26-0053
In order to meet the challenges of future CAFE regulations & pollutant emission, vehicle fuel efficiency must be improved upon without compromising vehicle performance. Optimization of engine breathing & its impact on vehicle level fuel economy, performance needs balance between conflicting requirements of vehicle Fuel Economy, performance & drivability. In this study a Port Fuel Injection, naturally aspirated small passenger car gasoline engine was selected which was being used in a typical small passenger car. Simulation approach was used to investigate vehicle fuel economy and performance, where-in 1D CFD Engine model was used to investigate and optimize Valve train events (Intake and exhaust valve open and close timings) for best fuel economy. Engine Simulation software is physics based and uses a phenomenological approach 0-D turbulent combustion model to calculate engine performance parameters. Engine simulation model was calibrated within 95% accuracy of test data.
Technical Paper

Fuel Efficient Algorithm for Climate Control in Next Generation Vehicles

2017-01-10
2017-26-0370
Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and, 2 Software change Hardware change leads to increase in cost, validation effort and time.
Technical Paper

Experimental Approach for the Knocking Noise Source Identification & Its Suppression through Lubrication Regime Optimization in Crank-Train of an IC Engine

2022-10-05
2022-28-0067
Over the years, Fuel efficiency and cabin comfort of vehicle has become increasingly important in buying decision and can significantly give competitive edge to the vehicle in marketplace. Weight and friction reduction of rotating and reciprocating components in engines is one of the proven approaches to improve the efficiency of internal combustion engine. To reduce the friction, the general approach is to use low viscosity engine oils, improve the surface finish and reduce the contact area of sliding elements, switch over from sliding contact to rolling contact etc. However sometimes this approach has adverse impact on engine NVH characteristics due to occurrence of abnormal transient noise due to mechanical knocking of the components in specific operating conditions.
Technical Paper

Evaluation of Sound Radiation from Exhaust Muffler Shell-A Novel Experimental Approach

2013-03-25
2013-01-0116
Shorter product development cycles, densely packed engine compartments and intensified noise legislation has increased the need for accurate predictions of passenger cars Exhaust system noise at early design stages. The urgent focus on the increasing CO2 emissions and the efficiency of IC-engines as well as upcoming technologies might adversely affect the noise emission from an exhaust system, so it is becoming increasingly important to evaluate the sub system level noise emissions in an early design stage in order to predict and optimize the exhaust system performance. Engine performance and vehicle NVH characteristics are two important parameters on which the design of the exhaust system has major influence. The reduction of exhaust noise is a very important factor in controlling the exterior and interior noise levels of vehicles, particularly to reach future target values of the pass-by noise and sound engineering for the vehicle.
Technical Paper

Effect of Muffler Characteristics on Performance of a Naturally Aspirated SI Engine

2013-11-27
2013-01-2834
With steep increase in fuel prices, there is a strong need for development of better engines with improved performance and emissions. This needs a dedicated effort on engine hardware optimization for lower CO2 levels. Exhaust muffler design is trade-off between noise, backpressure and size/weight. With increase in exhaust muffler volume and simplification of structure there is a corresponding drop observed in exhaust pressures. Study of such a phenomenon would give an insight to benefits achieved based on changes in muffler volumes/structure. This in a way leads to engine improvement. In this paper it has been shown how exhaust muffler characteristics (size and internal construction) impacts engine performance.
Technical Paper

Development of Test Method to Validate Synchronizer Ring Design for Torsional Fluctuations in Manual Transmission

2016-02-01
2016-28-0012
Manual transmissions dominate the Indian market for their obvious benefit of low cost and higher mechanical efficiency resulting in higher fuel economy. Synchronizer system in manual transmission enables smoother and quieter gear shifting. Synchronizer ring is the key element which provides the necessary frictional torque to synchronize the speed of gear and sleeve for smooth shifting. During vehicle running, synchronizer rings are free to rattle inside the indexing clearance. High engine torsional excitation and low clutch dampening can result into increased fluctuation of the input shaft of transmission. High fluctuation or lower contact area of synchronizer ring can lead to damage on the index area. This damage may cause hard gear shifting and gear shift blockage in case of extreme damage.
X