Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Vehicle Cold Start Mode Fuel Economy Simulation Model Making Methodology

2019-04-02
2019-01-0898
The air pollution and global warming has become a major problem to the society. To counter this worldwide emission norms have become more stringent in recent times and shall continue to get further stringent in the next decade. From OEMs perspective with increased complexity, it has become a necessity to use simulation methods along with model based systems approach to deal with system level complexities and reduce model development time and cost to deal with the various regulatory requirements and customer needs. The simulation models must have good correlation with the actual test results and at the same time should be less complex, fast, and integrable with other vehicle function modelling. As the vehicle fuel economy is declared in cold start condition, the fuel economy simulation model of vehicle in cold start condition is required. The present paper describes a methodology to simulate the cold start fuel economy.
Technical Paper

Study of Parameters Affecting the Impact Performance of an Alloy Wheel and Noble Approach Followed to Improve the Impact Performance

2015-04-14
2015-01-1514
A typical wheel development process involves designing a wheel based on a defined set of criteria and parameters followed by verification on CAE. The virtual testing is followed by bench level and vehicle level testing post which the design is finalized for the wheel. This paper aims to establish the learning which was accomplished for one such development process. The entire wheel development process had to be analyzed from scratch to arrive at a countermeasure for the problem. This paper will not only establish the detailed analysis employed to determine the countermeasure but also highlight its significance for the future development proposals. The paper first establishes the failure which is followed by the detailed analysis to determine the type of failure, impact levels and the basic underlying conditions. This leads to a systematic approach of verification which encompasses the manufacturing process as well as the test methodology.
Technical Paper

Study of Effect of Variation in Micro-Geometry of Gear Pair on Noise Level at Transmission

2015-01-14
2015-26-0130
Gear noise and vibration in automobile transmissions is a phenomenon of great concern. Noise generated at the gearbox, due to gear meshing, also known as gear whine, gets transferred from the engine cabin to the passenger cabin via various transfer paths and is perceived as air borne noise to the passengers in the vehicle. This noise due to its tonal nature can be very uncomfortable to the passengers. Optimizing micro-geometry of a gear pair can help in improving the stress distribution on tooth flank and reducing the sound level of the tonal noise generated during the running of the gearbox when that gear pair is engaged. This technical paper contains the study of variation in noise level in passenger cabin and contact on tooth flank with change in micro-geometry parameters (involute slope and lead slope) of a particular gear pair. Further scope of study has been discussed at the end of the paper.
Technical Paper

Simulating Real World Driving: A Case study on New Delhi

2016-02-01
2016-28-0236
In the Indian Context, Fuel Economy of a vehicle is one of key elements while buying a Car. The fuel economy declared by OEMs (Original Equipment Manufacturers) is one of the key indicators while assessing the fuel economy. However it is based on a standard driving cycle and evaluated under standard conditions as mandated by emission legislation. As the driving pattern has a major influence on fuel economy, the objective of this paper is to study real world driving patterns and to define a methodology to simulate a real world driving cycle. A case study was done on Delhi City, by running a fleet of vehicles in different traffic conditions. Thereafter data analysis like acceleration %, specific energy demand per distance, Acceleration vs. Vehicle Speed distribution etc. was done with the help of MATLAB. The final validation of cycle was done by comparing Lab results with on-road Fuel Economy data.
Technical Paper

Research on Exploring Effect of Stain Resisting Chemical Treatment on Automotive Fabric Parameters

2019-04-02
2019-01-0463
Fabrics play a vital role in defining the overall aesthetics of automotive interiors, primarily with fabric cleanliness. In this respect, the cleanliness of the fabric also becomes equally important. The fabric interior in a car is very prone to staining due to the spilling of water or any liquid substance over it. In order to protect and enhance the life of the fabric, various chemical treatments are suggested as fabric finishes. There are different chemical bases available for the same. Fluorocarbon base is the most effective treatment and is the focus of this study. This chemical treatment lowers the surface energy of the fabric by increasing the hydrophobicity of fabric. Hence, the liquid roll over the surface in the form of droplets by creating higher contact angle over the fiber surface. This study focuses on the effect of chemical treatment on the automotive fabric’s parameters, especially light color fabric.
Technical Paper

Optimization of Simulation Channels for Inverse FRF Calculation on 6-Axis Road Load Simulator: An Experimental Approach

2017-01-10
2017-26-0303
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors [2]. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper experimental approach has been applied for the optimization of the simulation channels to be used for simulation of normal Indian passenger car on 4 corners, 6-Axis Road Load Simulator. Time domain tests were performed to identify potential simulation channels.
Technical Paper

Methodology to Decide Overall Drive Performance Index of Passenger Vehicles

2022-10-05
2022-28-0100
Fun to drive, pick-up of vehicle, high acceleration feeling of vehicle, time to reach max velocities are some parameters prevailing in the passenger vehicle market. In addition to focusing on information about fuel economy declared by manufacturer, the customer also has drivability related criteria in his mind. Although drivability is subjective, it can be judged by using various parameters like maximum speed, pick-up feeling, overtaking acceleration, time to reach 0 – 100 km/h or 0 – 60 km/h, etc. While comparing two vehicles of the same segment, one vehicle may perform better on some of the parameters while losses on others. To decide overall drive performance of a vehicle based on various measured performance related parameters, a methodology is defined. This will help to understand the overall performance of a vehicle holistically and to compare its performance with other vehicles in a better way.
Technical Paper

Methodology for Failure Simulation Using 4 Corner 6 DOF Road Load Simulator of Overhanging Components: An Experimental Approach

2019-11-21
2019-28-2404
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. Due to non- linear nature of the vehicle parts, transmissibility of load is a complex phenomenon. Due to this complex transmissibility, good simulation at wheel center does not always ensure good correlation at all vehicle locations. The low level of correlation is common at the locations like engine mount, horn bracket and other overhanging brackets which are away from the wheel center.
Technical Paper

Methodology for Establishing Damage Criteria Using Probability Distribution Function on Component Level Tests - a Case Study

2016-02-01
2016-28-0041
Automobile components are usually subjected to complex varying loads. Thus, fatigue failure is a common mode of failure in automobile components. Accurately predicting the fatigue life is the key point for light weight and also reliability design of automobile components. Various life prediction theories are being used in the automotive industry for damage analysis using material S-N curves. However, due to variability in manufacturing, material spec etc. it is difficult to predict the experimental lives using conventional theories. Probability based statistical modeling is prevalent in the industry for life prediction. Probabilistic plots of cycles to failure to constant amplitude loads are plotted and used for prediction purpose. As the component is subjected to varying loads in real world, defining a single parameter i.e. damage would be more relevant compared to loads.
Technical Paper

Innovative Simulation Approach to Analyze and Add Value to Upcoming Complex Drive Cycle (WLTC) for Passenger Cars

2013-11-27
2013-01-2801
Vehicles which are sold and put into service in a country have to meet the regulations and standards of that country. Every country has a separate regulation and approval procedure which requires expensive design modifications, additional tests and duplicating approvals. Thus, there is the need to harmonize the different national technical requirements for vehicles and form a unique international regulation. With this rationale, the World Forum for Harmonization of Vehicle Regulations of the United Nations Economic Commission for Europe (UN/ECE/WP29) has brought governments and automobile manufacturers together to work on a new harmonized test cycle and procedure which is to be adopted around the world. This lead to the development of Worldwide Harmonized Light Duty Test Procedures (WLTP) and Cycles (WLTC). The test procedure is divided into 3 cycles, depending on a power to mass ratio of the tested vehicle.
Technical Paper

Implementation of Atkinson Effect for Improved Fuel Efficiency of Gasoline Engine Using 1-D Simulation Software and its Validation with Experimental Data

2021-09-22
2021-26-0053
In order to meet the challenges of future CAFE regulations & pollutant emission, vehicle fuel efficiency must be improved upon without compromising vehicle performance. Optimization of engine breathing & its impact on vehicle level fuel economy, performance needs balance between conflicting requirements of vehicle Fuel Economy, performance & drivability. In this study a Port Fuel Injection, naturally aspirated small passenger car gasoline engine was selected which was being used in a typical small passenger car. Simulation approach was used to investigate vehicle fuel economy and performance, where-in 1D CFD Engine model was used to investigate and optimize Valve train events (Intake and exhaust valve open and close timings) for best fuel economy. Engine Simulation software is physics based and uses a phenomenological approach 0-D turbulent combustion model to calculate engine performance parameters. Engine simulation model was calibrated within 95% accuracy of test data.
Technical Paper

Hybrid Controls Comparison on HILs Using a Modular Soft Platform

2016-02-01
2016-28-0026
Hybrid Electric Vehicle (HEV) Controls Development is an important aspect to realize the goals of Powertrain Electrification i.e. fuel economy and emission improvement. Keeping that in mind, development engineers need to formulate numerous control strategies. Once the control strategy is evaluated and frozen, it typically does not change from one vehicle model application to another. However, it may happen that Electronic Control Unit (ECU) manufacturer may change depending on the sourcing strategy. Therefore, in order to maintain uniformity, it may be required to compare control strategy of a finished ECU product frozen for one model application to be compared with new ECU sourced through another manufacturer. This paper discusses a methodology to compare control strategy of two ECU’s sourced from different ECU manufacturers with identical control requirements.
Technical Paper

Evaluating Effects of Roll Stiffness Change at Front and Rear Axles on Vehicle Maneuverability and Stability

2019-11-21
2019-28-2406
To cater the push towards “Vehicle Light Weighting”, both sprung and unsprung mass are being reduced. This results in reduced stiffness and thus has a profound undesirable effect on the overall vehicle handling. To understand the effect of different reduction ratios of sprung to unsprung mass; it is desired to understand how changes in stiffness affect the overall vehicle handling characteristics. Therefore, the study was conducted to experiment with different values of roll stiffness, at both front and rear axles and comparing the frequency response and phase change of Yaw Gain observed through a Pulse Input test. The present work is further correlated with subjective feedback to predict the shift in vehicle balance and handling characteristics.
Technical Paper

Development of Test Method to Validate Synchronizer Ring Design for Torsional Fluctuations in Manual Transmission

2016-02-01
2016-28-0012
Manual transmissions dominate the Indian market for their obvious benefit of low cost and higher mechanical efficiency resulting in higher fuel economy. Synchronizer system in manual transmission enables smoother and quieter gear shifting. Synchronizer ring is the key element which provides the necessary frictional torque to synchronize the speed of gear and sleeve for smooth shifting. During vehicle running, synchronizer rings are free to rattle inside the indexing clearance. High engine torsional excitation and low clutch dampening can result into increased fluctuation of the input shaft of transmission. High fluctuation or lower contact area of synchronizer ring can lead to damage on the index area. This damage may cause hard gear shifting and gear shift blockage in case of extreme damage.
Technical Paper

Challenges in Developing Low Rolling Resistance Tyre

2015-03-10
2015-01-0053
Vehicles in India will soon come with star ratings, signifying how environment-friendly they are. The OEM's have braced to improve fuel economy of their existing & upcoming models. Tyre rolling resistance is one of the significant factors for vehicle fuel consumption. Improvement in Fuel consumption is always a prime focus area & to improve it all major factors are considered. In newly launched models, the low rolling resistance tyre development was initiated. The project is challenging as it requires not only achieving low rolling resistance in smaller size tyres (12″ to 13″) but also required to meet other critical vehicle performance parameters like ride, handling, NVH & durability. Effects of Tyre construction, rubber compound were analyzed to achieve lower rolling resistance and better durability of tyre. In addition, the factors affecting the rolling resistance of tyre like inflation pressure, load, and speed in smaller tyre sizes (12″ to 13″) are discussed in this paper.
Technical Paper

CAE Approach to Reduce Engine Mount Rumble Noise

2022-10-05
2022-28-0080
With the increasing competition in the automotive industry, customer experience & satisfaction is at the top of every organization's goals. The customers have evolved & NVH refinement has become the parameter for their decision making in buying a car. The major source of rumble noise in a vehicle is the induced vibrations due to combustion forces in an IC engine. These vibrations are then transferred to the vehicle body through engine mounts. Hence engine mounts play a key role in defining the NVH & the ride performance of any vehicle. However, it is infeasible to validate every mount design through the physical test as it will be both costly & time-consuming. But multiple design iterations can be verified by the CAE approach quite effectively. This paper focuses on the novel CAE approach to evaluate the mount vibrations due to engine dynamics. The process involves preparing a FEA model of the complete Powertrain system.
Technical Paper

CAE Approach for Radiator Bush Dynamic Simulation

2022-10-05
2022-28-0094
Radiators are one of the major components in the automotive engine cooling system. The road excitations from the frame to the radiator are dampened using rubber bushes. In this work, we analyzed a radiator sub-assembly with bushes by applying acceleration which are recorded at the center of gravity of the radiator. The radiator is considered as the concentrated mass which is attached to the upper and the lower radiator tank which is further connected to the frame through the bushings. An implicit transient dynamic analysis is set up. The hyper elastic coefficients for EPDM rubber are determined using the experimental data fit and structural damping coefficients are applied. When excited by the acceleration applied at center of the radiator component, the rubber bushes are deformed severely. Moreover, the analysis shows high strains in certain location on the upper bush where the part showed actual failure in the testing.
Technical Paper

Aerodynamic Development of Maruti Suzuki Vitara Brezza using CFD Simulations

2017-01-10
2017-26-0268
Recent automotive trend shows that customer demand is moving towards bigger size vehicle with more comfort, space, safety, feature and technology. Global market of SUV is projected to surpass 21 million units by 2020. Despite economic slowdown and weak new car sales worldwide, India and China will continue to be primary market for SUV due to sheer size of population, urban expanding middle class and larger untapped rural market. However, stricter emission norms push for clean and green technology and unfavorable policy towards use of diesel vehicle has made the SUV design very challenging due to conflicting needs. Due to bigger size of vehicle, aerodynamic design plays an important role in achieving emission targets and higher fuel efficiency. This paper highlights the aerodynamic development of Maruti Suzuki Vitara Brezza, which is an entry level SUV vehicle with high ground clearance of 198 mm and best in class fuel economy of 24.3 kmpl.
Technical Paper

Aerodynamic Design Optimization in Rear End of a Hatchback Passenger Vehicle

2019-03-25
2019-01-1430
Aerodynamic evaluation plays an important role in the new vehicle development process to meet the ever increasing demand of Fuel Economy (FE), superior aero acoustics and thermal performance. Computational Fluid Dynamics (CFD) is extensively used to evaluate the performance of the vehicle at early design stage to overcome cost of proto-parts, late design changes and for time line adherence. CFD is extensively used to optimize the vehicle’s shape, profiles and design features starting from the concept stage to improve the vehicle’s aerodynamic performance. Since the shape of the vehicle determines the flow behavior around it, the performance is different for hatchback, notchback and SUV type of vehicles. In a hatchback vehicle, the roof line is abruptly truncated at the end, which causes flow separation and increase in drag.
Technical Paper

A Study of Engine Mount Optimisation of Three-Cylinder Engine through Multi-Body Dynamic Simulation and Its Verification by Vehicle Measurement

2015-01-14
2015-26-0126
Three-cylinder Engine without balancer shaft is a recent trend towards development of lightweight and fuel-efficient powertrain for passenger car. In addition, customer's expectation of superior NVH inside vehicle cabin is increasing day by day. Engine mounts address majority of the NVH issues related to transfer of vibration from engine to passenger cabin. Idle vibration isolation for a three-cylinder engine is a challenging task due to possibility of overlapping of Powertrain's rigid body modes with engine's firing frequency. This Overlapping of rigid body can be avoided either by modifying mount characteristic or by changing the position of mounts based on multi-body-dynamics (MBD) simulation. This paper explains about two types of engine mounting system for a front-wheel drive transversely mounted three-cylinder engine. The base vehicle was having three-point mounting system i.e. all three engine mounts were pre-loaded.
X