Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wind Noise and Aerodynamic Drag Optimization of Outside Rear View Mirrors

1993-05-01
931292
Automotive outside rear view mirror shape has become an important consideration in achieving wind noise and aerodynamic performance objectives. This paper describes a two step process used to develop a mirror shape which meets both wind noise and aerodynamic objectives. First, basic understanding of door mounted verses sail mounted mirrors and shape parameters was obtained by evaluating selected shapes and studying their physical measurements relative to their measured responses. Relationships between the wind noise and drag responses revealed performance range limitations for sail mounted mirrors. Second, a central composite experimental design was utilized to more closely investigate door mounted mirror shape parameters to determine optimal mirror performance potential. The resulting empirical models developed were used to determine the best overall solution.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

Vibrational Sensor Based on Fluid Damping Mechanisms

1990-02-01
900489
A piezoelectrically driven vibrating cantilever blade is damped by a number of mechanisms including viscous damping in a still fluid and aerodynamic damping in a flow. By measuring the damping of devices operating at resonance in the 1 to 5 kHz region, one can measure such properties as mass flow, absolute pressure or the product of molecualar mass and viscosity. In the case of the mass flow measurement, the device offers a mechanical alternative to hotwire and hot film devices for the automotive application.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Vehicle Aerodynamic Shape Optimization

2011-04-12
2011-01-0169
Recent advances in morphing, simulation, and optimization technologies have enabled analytically driven aerodynamic shape optimization to become a reality. This paper will discuss the integration of these technologies into a single process which enables the aerodynamicist to optimize vehicle shape as well as gain a much deeper understanding of the design space around a given exterior theme.
Technical Paper

Using Mass Spectrometry to Detect Ethanol and Acetaldehyde Emissions from a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline Blends

2011-04-12
2011-01-1159
Ethanol and acetaldehyde emissions from a direct ignition spark ignition were measured using mass spectrometry. Previous methods focused on eliminating or minimizing interference from exhaust species with identical atomic mass and fragment ions created in ionization process. This paper describes a new technique which exploits the fragment ions from ethanol and acetaldehyde. A survey of mass spectra of all major species of exhaust gas was conducted. It was found that ethanol contributes most ions in mass number 31 and that no other gas species produces ions at this mass number. Acetaldehyde detection suffers more interference. Nevertheless, it was estimated that detection at mass number 43 is possible with 10% error from 2-methylbutane. This new technique was validated in an engine experiment. By running the engine with pure gasoline and E85, the validity of the technique can be checked.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Understanding the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion Systems: An Analytical and Experimental Investigation

1996-10-01
962018
Direct-injection spark-ignition (DISI) engines have been investigated for many years but only recently have shown promise as a next generation gasoline engine technology. Much of this new enthusiasm is due to advances in the fuel injection system, which is now capable of producing a well-controlled spray with small droplets. A physical understanding of new combustion systems utilizing this technology is just beginning to occur. This analytical and experimental investigation with a research single-cylinder combustion system shows the benefits of in-cylinder gasoline injection versus injection of fuel into the intake port. Charge cooling with direct injection is shown to improve volumetric efficiency and reduce the mixture temperature at the time of ignition allowing operation with a higher compression ratio which improves the thermodynamic cycle efficiency.
Technical Paper

Titania Exhaust Gas Sensor for Automotive Applications

1979-02-01
790140
The change in the resistance of titanium dioxide with oxygen partial pressure is utilized to obtain an air-to-fuel ratio sensor. TiO2 material properties, sensor components and performance characteristics are discussed. Some results of engine dynamometer and vehicle tests of sensor performance and durability are presented.
Technical Paper

Time-Resolved, Speciated Emissions from an SI Engine During Starting and Warm-Up

1996-10-01
961955
A sampling system was developed to measure the evolution of the speciated hydrocarbon emissions from a single-cylinder SI engine in a simulated starting and warm-up procedure. A sequence of exhaust samples was drawn and stored for gas chromatograph analysis. The individual sampling aperture was set at 0.13 s which corresponds to ∼ 1 cycle at 900 rpm. The positions of the apertures (in time) were controlled by a computer and were spaced appropriately to capture the warm-up process. The time resolution was of the order of 1 to 2 cycles (at 900 rpm). Results for four different fuels are reported: n-pentane/iso-octane mixture at volume ratio of 20/80 to study the effect of a light fuel component in the mixture; n-decane/iso-octane mixture at 10/90 to study the effect of a heavy fuel component in the mixture; m-xylene and iso-octane at 25/75 to study the effect of an aromatics in the mixture; and a calibration gasoline.
Technical Paper

Time-Resolved Measurement of Speciated Hydrocarbon Emissions During Cold Start of a Spark-Ignited Engine

1994-03-01
940963
Speciated HC emissions from the exhaust system of a production engine without an active catalyst have been obtained with 3 sec time resolution during a 70°F cold start using two control strategies. For the conventional cold start, the emissions were initially enriched in light fuel alkanes and depleted in heavy aromatic species. The light alkanes fell rapidly while the lower vapor pressure aromatics increased over a period of 50 sec. These results indicate early retention of low vapor pressure fuel components in the intake manifold and exhaust system. Loss of higher molecular weight HC species does occur in the exhaust system as shown by experiments in which the exhaust system was preheated to 100° C. The atmospheric reactivity of the exhaust HC emissions for photochemical smog formation increases as the engine warms.
Technical Paper

Throttle Movement Rate Effects on Transient Fuel Compensation in a Port-Fuel-Injected SI Engine

2000-06-19
2000-01-1937
Throttle ramp rate effects on the in-cylinder fuel/air (F/A) excursion was studied in a production engine. The fuel delivered to the cylinder per cycle was measured in-cylinder by a Fast Response Flame Ionization detector. Intake pressure was ramped from 0.4 to 0.9 bar. Under slow ramp rates (∼1 s ramp time), the Engine Electronic Control (EEC) unit provided the correct compensation for delivering a stoichiometric mixture to the cylinder throughout the transient. At fast ramp rates (a fraction of a second ramps), a lean spike followed by a rich one were observed. Based on the actual fuel injected in each cycle during the transient, a x-τ model using a single set of x and τ values reproduced the cycle-to-cycle in-cylinder F/A response for all the throttle ramp rates.
Technical Paper

Thermodynamic Loss at Component Interfaces in Stirling Cycles

1992-08-03
929468
The paper considers the thermodynamic irreversibility in Stirling cycle machines at the interface between components with different thermodynamic characteristics. The approach of the paper is to consider the simplest possible cases and to focus on the factors that influence the thermodynamic losses. For example, an ideal adiabatic cylinder facing an ideal isothermal heat exchanger is considered. If there is no mixing in the cylinder (gas remains one dimensionally stratified), there will be no loss (irreversibility) if the gas motion is in phase with the gas pressure changes. If there is a phase shift, as required to have a network for the cylinder, there will be a loss (entropy generation) because the gas will not match the heat exchanger temperature. There will also be a loss if the gas in the cylinder is mixed rather than stratified. Similar simple interface conditions can be considered between components and interconnecting open volumes and between heat exchangers and regenerators.
Technical Paper

The Study of Friction between Piston Ring and Different Cylinder Liners using Floating Liner Engine - Part 1

2012-04-16
2012-01-1334
The objective of this work was to develop an experimental system to support development and validation of a model for the lubrication of two-piece Twin-Land-Oil-Control-Rings (hereafter mentioned as TLOCR). To do so, a floating liner engine was modified by opening the head and crankcase. Additionally, only TLOCR was installed together with a piston that has 100 micron cold clearance to minimize the contribution of the skirt to total friction. Friction traces, FMEP trend, and repeatability have been examined to guarantee the reliability of the experiment results. Then, engine speed, liner temperature, ring tension, and land widths were changed in a wide range to ensure all three lubrication regimes were covered in the experiments.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Technical Paper

The Occurrence of Flash Boiling in a Port Injected Gasoline Engine

1998-10-19
982522
The occurrence of flash boiling in the fuel spray of a Port Fuel Injected (PFI) spark ignition engine has been observed and photographed during normal automotive vehicle operating conditions. The flash boiling of the PFI spray has a dramatic affect on the fuel spray characteristics such as droplet size and spray cone angle which can affect engine transient response, intake valve temperature and possibly hydrocarbon emissions. A new method of correlating the spray behavior using the equilibrium vapor/liquid (V/L) volume ratio of the fuel at the measured fuel temperature and manifold pressure is introduced.
Technical Paper

The Molecular Analysis of Sulfate Species in Environmental Aerosols Using Chemical Ionization Mass Spectrometry

1977-02-01
770063
Speciation of sulfurous acid, sulfuric acid and ammonium sulfate collected from the aerosol phase on a Fluoropore filter has been readily accomplished using techniques of chemical ionization mass spectrometry combined with thermal separation. Thermal separation of ammonium hydrogen sulfate from ammonium sulfate was not possible. Spectral separation of these species by selective ionization is proposed. Analysis of sulfate aerosols collected from ambient air and catalyzed vehicle emissions is described. It was found that sulfuric acid aerosol was rapidly converted to ammonium sulfate or ammonium hydrogen sulfate in the presence of ambient concentrations of ammonia. Ambient samples collected in the Detroit metropolitan area have been found to contain only trace quantities of sulfuric aicd. Sulfate samples collected from a dilution tube into which catalyzed vehicle exhaust was injected were found to contain significant quantities of ammonium sulfate in addition to sulfuric acid.
Technical Paper

The Mars Gravity Biosatellite: Innovations in Murine Motion Analysis and Life Support

2005-07-11
2005-01-2788
The MIT-based Mars Gravity Biosatellite payload engineering team has been engaged in designing and prototyping sensor and control systems for deployment within the rodent housing zone of the satellite, including novel video processing and atmospheric management tools. The video module will be a fully autonomous real-time analysis system that takes raw video footage of the specimen mice as input and distills those parameters which are of primary physiological importance from a scientific research perspective. Such signals include activity level, average velocity and rearing behavior, all of which will serve as indicators of animal health and vestibular function within the artificial gravity environment. Unlike raw video, these parameters require minimal storage space and can be readily transmitted to earth over a radio link of very low bandwidth.
X