Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fuel Effects on HCCI Operation in a Spark Assisted Direct Injection Gasoline Engine

2011-08-30
2011-01-1763
The fuel effects on HCCI operation in a spark assisted direct injection gasoline engine are assessed. The low load limit has been extended with a pilot fuel injection during the negative valve overlap (NVO) period. The fuel matrix consists of hydrocarbon fuels and various ethanol blends and a butanol blend, plus fuels with added ignition improvers. The hydrocarbon fuels and the butanol blend do not significantly alter the high or the low limits of operation. The HCCI operation appears to be controlled more by the thermal environment than by the fuel properties. For E85, the engine behavior depends on the extent that the heat release from the pilot injected fuel in the NVO period compensates for the evaporative cooling of the fuel.
Technical Paper

Dynamometer Development Results for a Stratified-Charge DISI Combustion System

2002-10-21
2002-01-2657
This report describes the dynamometer testing portion of the combustion system development of a direct-injection stratified-charge gasoline engine. The engine used in this study is a single-cylinder, direct-injection engine with a newly designed cylinder head comprised of 4-valves per cylinder, an intake-side-mounted DI fuel injector and a bowl-in-piston wall-guided stratified-charge combustion system. Test results detailed in this report include evaluation of four piston designs, two combustion chamber designs, and two injector spray angles. Tests were run at stratified-charge part-load, homogeneous-charge part-load, and WOT conditions. The program had aggressive goals in improving both WOT performance and part-load fuel economy while achieving Stage IV emission requirements. Tests results showed that the engine was able to meet these program goals.
Journal Article

Development and Optimization of the Ford 3.5L V6 EcoBoost Combustion System

2009-04-20
2009-01-1494
Recently, Ford Motor Company announced the introduction of EcoBoost engines in its Ford, Lincoln and Mercury vehicles as an affordable fuel-saving option to millions of its customers. The EcoBoost engine is planned to start production in June of 2009 in the Lincoln MKS. The EcoBoost engine integrates direct fuel injection with turbocharging to significantly improve fuel economy via engine downsizing. An application of this technology bundle into a 3.5L V6 engine delivers up to 12% better drive cycle fuel economy and 15% lower emissions with comparable torque and power as a 5.4L V8 PFI engine. Combustion system performance is key to the success of the EcoBoost engine. A systematic methodology has been employed to develop the EcoBoost engine combustion system.
X