Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

Zero Prototype Approach in the Development of a Plastic Automotive Component

2004-11-16
2004-01-3300
In the developement process, the engineer is required to design, validate and deliver the components for manufacturing, in an as short as possible lead time. For that, the engineer may use some available tools to save not only time, but also cost. This work presents a zero prototype approach applyied to a plastic component, whose main accomplishment was the decreasing of lead time development due to the intensive use of virtual tools (CAD/CAE). As a result, the product was delivered in a short time, with no need of building physical prototypes, thus reducing development cost.
Technical Paper

Whirl Analysis of an Overhung Disk Shaft System Mounted on Non-rigid Bearings

2022-03-29
2022-01-0607
Eigenvalues of a simple rotating flexible disk-shaft system are obtained using different methods. The shaft is supported radially by non-rigid bearings, while the disk is situated at one end of the shaft. Eigenvalues from a finite element and a multi-body dynamic tool are compared against an established analytical formulation. The Campbell diagram based on natural frequencies obtained from the tools differ from the analytical values because of oversimplification in the analytical model. Later, detailed whirl analysis is performed using AVL Excite multi-body tool that includes understanding forward and reverse whirls in absolute and relative coordinate systems and their relationships. Responses to periodic force and base excitations at a constant rotational speed of the shaft are obtained and a modified Campbell diagram based on this is developed. Whirl of the center of the disk is plotted as an orbital or phase plot and its rotational direction noted.
Technical Paper

Weld Line Factors for Thermoplastics

2017-03-28
2017-01-0481
Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C). The results showed that different materials had various values of W-L factor.
Technical Paper

Weight Reduction Workshops “Saving Weight and Saving Money”

2002-03-04
2002-01-0364
Identifying weight reduction ideas is not difficult in the engineering world today. The difficulty is implementation! Typically Product System Teams generate long lists of weight reduction roadmap ideas, but never have time to deliver. Engineers today are too busy to run dual path programs. ‘Roadmap’ ideas sit on an opportunities list until they are “out of time” and then “fall off” the list. This paper will describe a Weight Reduction Workshop process implemented at Ford Motor Company which drives weight reduction ideas into program assumptions early in the definition of a product program. The weight reduction workshop results are: Weight Reduction Ideas Recommended Variable Cost & Investment Estimates Weight savings Cost per pound of weight saved Technical confidence Work plan for each recommended idea Ideas are also evaluated against all the program's sub-attribute requirements to insure the design functions of the component are not compromised.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Wall Film Dynamics Modeling for Impinging Sprays in Engines

2004-03-08
2004-01-0099
This paper proposes a film dynamics model for liquid film resulting from fuel spray impinging on a wall surface. It is based on a thin film assumption and uses numerical particles to represent the film to be compatible with the particle spray models developed previously. The Lagrangian method is adopted to govern the transport of the film particles. A new, statistical treatment was introduced of the momentum exchange between the impinging spray and the wall film to account for the directional distribution of the impinging momentum. This model together with the previously published models for outgoing droplets constitutes a complete description of the spray wall impingement dynamics. For model validation, films resulting from impinging sprays on a flat surface with different impingement angles were calculated and the results were compared with the corresponding experimental measurements.
Technical Paper

Verification and Test Methodologies for Structural Aluminum Repair

2003-03-03
2003-01-0570
The increasing use of aluminum in the design of Body In White (BIW) structures created the need to develop and verify repair methodologies specific to this substrate. Over the past century, steel has been used as the primary material in the production of automotive BIW systems. While repair methods and techniques in steel have been evolving for decades, aluminum structural repair requires special attention for such common practices as welding, mechanical fastening, and the use of adhesives. This paper outlines some of the advanced verification and testing methodologies used to develop collision repair procedures for the aluminum 2003 Jaguar XJ sedan. It includes the identification of potential failure modes found in production and customer applications, the formulation of testing methodologies, CAE verification testing and component subsystem prove-out. The objective of the testing was to develop repair methodologies that meet or exceed production system performance characteristics.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Vehicle Dynamics Objective Metrics

2003-11-18
2003-01-3631
Among the development phases of an automotive vehicle one can point out the definition of the main characteristics of its suspensions like for example the suspension kinematics and compliances properties. Suspension definition phase can be understood as the following scenario: given a suspension type, which hard points (geometric) and what values of stiffness for the whole system will result in a desired dynamic behavior for the vehicle as well as production feasibility. This present work intends to show the influence of some suspension properties on the global dynamic behavior of the vehicle, having as a target an efficient suspension design. In terms of global dynamic behavior this work point out some control parameters, which describe the vehicle transient and steady-state properties. Those parameters are: Yaw phase lag, understeer gradient, Steady state acceleration gain and yaw overshoot during a maneuver like brake in a turn and power-off in a curve.
Technical Paper

Vehicle Cascade & Target Response Analysis (VeCTRA) is an Excel Based Tool Used for the Idle NVH Target Cascade Process

2003-05-05
2003-01-1434
Recent trends show a growing demand for improved powertrain noise and vibration quality. In particular, there is little customer acceptance of vibration and noise (“boom”) at engine idle speeds. CAE analysis is being used increasingly as an aid for reducing overall vehicle level responses. Traditionally, analytical idle response is evaluated for only one particular engine order at a time. An efficient Excel based tool called VeCTRA (Vehicle Cascade & Target Response Analysis) was developed to accurately assess the effects of multiple powertrain orders on the vehicle level idle response. VeCTRA is capable of predicting the overall vehicle level response (tactile and acoustic) as well as determining the contribution from each engine order and the specific component excitations within an order. VeCTRA is capable of using analytical or experimentally measured sensitivity and/or excitation data.
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Journal Article

Using an Assembly Sequencing Application to React to a Production Constraint: a Case Study

2017-03-28
2017-01-0242
Ford Motor Company’s assembly plants build vehicles in a certain sequence. The planned sequence for the plant’s trim and final assembly area is developed centrally and is sent to the plant several days in advance. In this work we present the study of two cases where the plant changes the planned sequence to cope with production constraints. In one case, a plant pulls ahead two-tone orders that require two passes through the paint shop. This is further complicated by presence in the body shop area of a unidirectional rotating tool that allows efficient build of a sequence “A-B-C” but heavily penalizes a sequence “C-B-A”. The plant changes the original planned sequence in the body shop area to the one that satisfies both pull-ahead and rotating tool requirements. In the other case, a plant runs on lean inventories. Material consumption is tightly controlled down to the hour to match with planned material deliveries.
Technical Paper

Using Virtual Seat Prototyping to Understand the Influence of Craftsmanship on Safety, and Seating Comfort

2011-04-12
2011-01-0805
Traditional automotive seat development has relied on a series of physical prototypes that are evaluated and refined in an iterative fashion. Costs are managed by sharing prototypes across multiple attributes. To further manage costs, many OEMs and Tier 1s have, over the past decade, started to investigate various levels of virtual prototyping. The change, which represents a dramatic paradigm shift, has been slow to materialize since virtual prototyping has not significantly reduced the required number of physical prototypes. This is related to the fact virtual seat prototyping efforts have been focused on only selected seat attributes - safety / occupant positioning and mechanical comfort are two examples. This requires that physical prototypes still be built for seat attributes like craftsmanship, durability, and thermal comfort.
Journal Article

Using Ejector Diluters to Sample Vehicle Exhaust at Elevated Pressures and Temperatures

2008-10-06
2008-01-2434
This paper presents an alternative and relatively simple method which allows the use of ordinary ejector-type diluters over a wide range of sample inlet conditions including elevated pressures and temperatures. After calibration of the ejector diluter, the dilution can be accurately characterized using only the pressures at the inlet and the outlet of the diluter and the sample temperature. The method is based on a semi-empirical, stationary model taking into account the critical parameters needed to predict the dilution factor. Under steady state operation it achieves accuracies estimated to be below ±8% (95% confidence interval) for diluter inlet pressures in the range of 1000 - 4000 mbar absolute and temperatures between 20 - 200°C. Performance under actual vehicle testing conditions is evaluated upstream of the DPF for a diesel vehicle run on a chassis dynamometer.
Technical Paper

Using Dimensional Analysis to Build a Better Transfer Function

2004-03-08
2004-01-1129
A key ingredient in designing products that are more robust is a thorough knowledge of the physics of the ideal function of those products and the physics of the failure modes of those products. We refer to the mathematical functions describing this physics as the transfer functions for that product. Dimensional analysis (DA) is a well known, but often overlooked, tool for reducing the number of experiments needed to characterize a physical system. In this paper, we demonstrate how the application of DA can be used to reduce the size of a DOE needed to estimate transfer functions experimentally. Furthermore, the transfer function generated using DOEs with DA tend to be more general than those generated using larger DOEs directly on the design parameters. With ever-increasing competitive pressure and reduced product development time, a tool such as DA, which can dramatically reduce experimental cost, is an incredibly valuable addition to an engineers toolbox.
Technical Paper

Using Artificial Ash to Improve GPF Performance at Zero Mileage

2019-04-02
2019-01-0974
Gasoline particulate filters (GPF) with high filtration efficiency (>80%) at zero mileage are in growing demand to meet increasingly tight vehicle emission standards for particulate matter being implemented in US, EU, China and elsewhere. Current efforts to achieve high filter performance mainly focus on fine-tuning the filter structure, such as the pore size distribution and porosity of the bare substrate, or the washcoat loading and location of catalyzed substrates. However, high filtration efficiency may have a cost in high backpressure that negatively affects engine power. On the other hand, it has been recognized in a few reports that very low amounts of ash deposits (from non-combustible residue in the exhaust) can significantly increase filtration efficiency with only a mild backpressure increase.
Technical Paper

Use of Photogrammetry in Extracting 3D Structural Deformation/Dummy Occupant Movement Time History During Vehicle Crashes

2005-04-11
2005-01-0740
The ability to extract and evaluate the time history of structural deformations or crush during vehicle crashes represents a significant challenge to automotive safety researchers. Current methods are limited by the use of electro-mechanical devices such as string pots and/or linear variable displacement transducers (LVDT). Typically, one end of the transducer must be mounted to a point on the structure that will remain un-deformed during the event; the other end is then attached to the point on the structure where the deformation is to be measured. This approach measures the change in distance between these two points and is unable to resolve any movement into its respective X, Y, or Z directions. Also, the accuracy of electro-mechanical transducers is limited by their dynamic response to crash conditions. The photogrammetry technique has been used successfully in a wide variety of applications including aerial surveying, civil engineering and documentation of traffic accidents.
Technical Paper

Urban Vehicle Design Competition - History, Progress, Development

1972-02-01
720497
The Urban Vehicle Design Competition was inspired by the success of the Clean Air Car Race and the Great Electric Car Race. The academic community recognized the tremendous educational value of these events, and encouraged development of UVDC from its inception. The project was designed by engineering students to benefit students throughout North America. The rules of the competition include technical paper requirements that make the competition extremely attractive to professors who wish to build a course around this theme. The response of more than 2000 engineering students at 80 universities throughout the United States and Canada has indicated the success of the structure of the competition. The first major objective of the UVDC project has been met. Ninety-three teams throughout the country entered the UVDC design portion of the contest. The second portion of the project is the prototype contest of August 1972.
X