Refine Your Search

Topic

Author

Search Results

Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Virtual Exhaust Gas Temperature Measurement

2017-03-28
2017-01-1065
Exhaust temperature models are widely used in the automotive industry to estimate catalyst and exhaust gas temperatures and to protect the catalyst and other vehicle hardware against over-temperature conditions. Modeled exhaust temperatures rely on air, fuel, and spark measurements to make their estimate. Errors in any of these measurements can have a large impact on the accuracy of the model. Furthermore, air-fuel imbalances, air leaks, engine coolant temperature (ECT) or air charge temperature (ACT) inaccuracies, or any unforeseen source of heat entering the exhaust may have a large impact on the accuracy of the modeled estimate. Modern universal exhaust gas oxygen (UEGO) sensors have heaters with controllers to precisely regulate the oxygen sensing element temperature. These controllers are duty cycle based and supply more or less current to the heating element depending on the temperature of the surrounding exhaust gas.
Technical Paper

Using Mass Spectrometry to Detect Ethanol and Acetaldehyde Emissions from a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline Blends

2011-04-12
2011-01-1159
Ethanol and acetaldehyde emissions from a direct ignition spark ignition were measured using mass spectrometry. Previous methods focused on eliminating or minimizing interference from exhaust species with identical atomic mass and fragment ions created in ionization process. This paper describes a new technique which exploits the fragment ions from ethanol and acetaldehyde. A survey of mass spectra of all major species of exhaust gas was conducted. It was found that ethanol contributes most ions in mass number 31 and that no other gas species produces ions at this mass number. Acetaldehyde detection suffers more interference. Nevertheless, it was estimated that detection at mass number 43 is possible with 10% error from 2-methylbutane. This new technique was validated in an engine experiment. By running the engine with pure gasoline and E85, the validity of the technique can be checked.
Journal Article

Tier 2 Test Fuel Impact to Tier 3 Aftertreatment Systems and Calibration Countermeasures

2018-04-03
2018-01-0941
During the course of emissions and fuel economy (FE) testing, vehicles that are calibrated to meet Tier 3 emissions requirements currently must demonstrate compliance on Tier 3 E10 fuel while maintaining emissions capability with Tier 2 E0 fuel used for FE label determination. Tier 3 emissions regulations prescribe lower sulfur E10 gasoline blends for the U.S. market. Tier 3 emissions test fuels specified by EPA are required to contain 9.54 volume % ethanol and 8-11 ppm sulfur content. EPA Tier 2 E0 test fuel has no ethanol and has nominal 30 ppm sulfur content. Under Tier 3 rules, Tier 2 E0 test fuel is still used to determine FE. Tier 3 calibrations can have difficulty meeting low Tier 3 emissions targets while testing with Tier 2 E0 fuel. Research has revealed that the primary cause of the high emissions is deactivation of the aftertreatment system due to sulfur accumulation on the catalysts.
Technical Paper

Three-Way Catalyst Diagnostics and Prognostics Based on Support Vector Machines

2017-03-28
2017-01-0975
A three-way catalytic converter (TWC) is an emissions control device, used to treat the exhaust gases in a gasoline engine. The conversion efficiency of the catalyst, however, drops with age or customer usage and needs to be monitored on-line to meet the on board diagnostics (OBD II) regulations. In this work, a non-intrusive catalyst monitor is developed to diagnose the track the remaining useful life of the catalyst based on measured in-vehicle signals. Using air mass and the air-fuel ratio (A/F) at the front (upstream) and rear (downstream) of the catalyst, the catalyst oxygen storage capacity is estimated. The catalyst capacity and operating exhaust temperature are used as an input features for developing a Support Vector Machine (SVM) algorithm based classifier to identify a threshold catalyst. In addition, the distance of the data points in hyperspace from the calibrated threshold plane is used to compute the remaining useful life left.
Technical Paper

The Influence of Ammonia Slip Catalysts on Ammonia, N2O and NOX Emissions for Diesel Engines

2007-04-16
2007-01-1572
The use of urea-based selective catalytic reduction (SCR) is a promising method for achieving U.S. Tier 2 diesel emission standards for NOx. To meet the Tier 2 standards for Particulate Matter (PM), a catalyzed diesel particulate filter (CDPF) will likely be present and any ammonia (NH3) that is not consumed over an SCR catalyst would pass over the CDPF to make nitrous oxide (N2O) emissions and/or oxides of nitrogen (NOx), or exit the exhaust system as NH3. N2O is undesirable due to its high greenhouse gas potential, while NOx production from the slipped NH3 would reduce overall system NOx conversion efficiency. This paper reviews certain conditions where NH3 slip past an SCR system may be a concern, looks at what would happen to this slipped NH3 over a CDPF, and evaluates the performance of various supplier NH3 slip catalysts under varied space velocities, temperatures and concentrations of NH3 and NOx.
Technical Paper

The Effects of Sulfated Ash, Phosphorus and Sulfur on Diesel Aftertreatment Systems - A Review

2007-07-23
2007-01-1922
This paper reviews the relevant literature on the effects of sulfated ash, phosphorus, and sulfur on DPF, LNT, and SCR catalysts. Exhaust backpressure increase due to DPF ash accumulation, as well as the rate at which ash is consumed from the sump, were the most studied lubricant-derived DPF effects. Based on several studies, a doubling of backpressure can be estimated to occur within 270,000 to 490,000 km when using a 1.0% sulfated ash oil. Postmortem DPF analysis and exhaust gas measurements revealed that approximately 35% to 65% less ash was lost from the sump than was expected based on bulk oil consumption estimates. Despite significant effects from lubricant sulfur and phosphorus, loss of LNT NOX reduction efficiency is dominated by fuel sulfur effects. Phosphorus has been determined to have a mild poisoning effect on SCR catalysts. The extent of the effect that lubricant phosphorus and sulfur have on DOCs remains unclear, however, it appears to be minor.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Technical Paper

The Effects of Aging Temperature and PGM Loading on the NOx Storage Capacity of a Lean NOx Trap

2005-04-11
2005-01-1117
A laboratory aging study was performed on samples of a lean NOx trap with platinum group metal (PGM) loadings of 0.53, 1.06, 2.12, and 3.18 g/liter. The LNT samples were aged at inlet temperatures of 650°C, 750°C, 800°C, and 850°C behind samples of a three-way catalyst that were aged on a pulse-flame combustion reactor with a Ford-proprietary durability schedule representing 80,000 km of customer use. For all aging temperatures, higher PGM loadings were beneficial for low temperature NOx performance, attributable to an increase in the oxidation of NO to NO2. Conversely, lower PGM loadings were beneficial for high temperature NOx performance after aging at 650°C and 750°C, as higher loadings promoted the decomposition of the nitrates during lean operation and thereby decreased the NOx storage capability at high temperatures. Also, higher PGM loadings increased the OSC of the trap and thereby increased the purge requirements.
Journal Article

The Effect of Hydrocarbons on the Selective Catalyzed Reduction of NOx over Low and High Temperature Catalyst Formulations

2008-04-14
2008-01-1030
Selective Catalytic Reduction of NOx is a promising technology to enable diesel engines to meet certification under Tier 2 Bin 5 emissions requirements. SCR catalysts for vehicle use are typically zeolitic materials known to store both hydrocarbons and ammonia. Ammonia storage on the zeolite has a beneficial effect on NOx conversion; hydrocarbons however, compete with ammonia for storage sites and may also block access to the interior of the zeolites where the bulk of the catalytic processes take place. This paper presents the results of laboratory studies utilizing surrogate hydrocarbon species to simulate engine-out exhaust over catalysts formulated to operate in both low (≈175-500°C) and high temperature (≈250-600°C) regimes. The effects of hydrocarbon exposure of these individual species on the SCR reaction are examined and observations are made as to necessary conditions for the recovery of SCR activity.
Technical Paper

The Effect of Different Ageing Conditions on Spatial Variations in Emissions Across the Radius of a Close-coupled After-treatment System

2005-04-11
2005-01-1095
Using local emissions measurements immediately downstream of a close-coupled catalyst, spatial variations in emissions have been analysed for close-coupled catalysts with different ageing histories. Comparison of the radial emissions profiles between a uniformly-aged (oven-aged) catalyst and two vehicle-aged parts suggests that the vehicle-aged parts have substantial variations in catalyst damage across the radius of the catalyst. The radial variations in damage were confirmed by bench reactor and post-mortem studies. The radial catalyst damage profiles inferred from engine-based evaluations of vehicle aged catalysts show broad correlation with high flow areas identified by CFD predictions and high temperature regions as measured during engine tests.
Technical Paper

The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future: Part II

2018-04-03
2018-01-0939
It is anticipated that future gasoline engines will have improved mechanical efficiency and consequently lower exhaust temperatures at low load conditions, although the exhaust temperatures at high load conditions are expected to remain the same or even increase due to the increasing use of downsized turbocharged engines. In 2014, a collaborative project was initiated at Ford Motor Company, Oak Ridge National Lab, and the University of Michigan to develop three-way catalysts with improved performance at low temperatures while maintaining the durability of current TWCs. This project is funded by the U.S. Department of Energy and is intended to show progress toward the USDRIVE target of 90% conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) at 150 °C after high mileage aging. The testing protocols specified by the USDRIVE ACEC team for stoichiometric S-GDI engines were utilized during the evaluation of experimental catalysts at all three facilities.
Journal Article

The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future

2017-03-28
2017-01-0918
In anticipation that future gasoline engines will have improved fuel efficiency and therefore lower exhaust temperatures during low load operation, a project was initiated in 2014 to develop three-way catalysts (TWC) with improved activity at lower temperatures while maintaining the durability of current TWCs. This project is a collaboration between Ford Motor Company, Oak Ridge National Laboratory, and the University of Michigan and is funded by the U.S. Department of Energy. The ultimate goal is to show progress towards the USDRIVE goal of 90% conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) at 150°C after high mileage aging. A reactor was set up at Ford to follow the catalyst testing protocols established by the USDRIVE ACEC tech team for evaluating catalysts for stoichiometric gasoline direct-injection (S-GDI) engines; this protocol specifies a stoichiometric blend of CO/H2, NO, C3H6, C2H4, C3H8, O2, H2O, and CO2 for the evaluations.
Journal Article

TWC+LNT/SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1006
A laboratory study was performed to assess the potential capability of TWC+LNT/SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. It was assumed that the exhaust system would need a close-coupled (CC) TWC, an underbody (U/B) TWC, and a third U/B LNT/SCR converter to satisfy the emission standards on the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. Sizing studies were performed to determine the minimum LNT/SCR volume needed to satisfy the NOx target. The ability of the TWC to oxidize the HC during rich operation through steam reforming was crucial for satisfying the HC target.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Technical Paper

Statistical Analysis of the Drivability Impacts with Ethanol

2014-09-30
2014-36-0437
This paper presents a study performed in 10 vehicles available in Brazilian market where the drivability with ethanol and gasoline, also referred as gasohol were compared. The motivation for this work came from the constant competition of the automotive industry, where engineers are searching for ways to improve the quality of the products aiming the “best in class” drivability with the best cost efficiency. For the Brazilian market, a further complexity is added to the development and verification process, which is the need to design and verify the controls and calibration considering the two fuels available in the market, the ethanol and the gasoline. In order to determine how the drivability is impacted by the ethanol, the paper presents a study where the drivability data were generated using the objective drivability measurement system AVL-DRIVE™.
Journal Article

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures

2009-11-02
2009-01-2673
Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the delivered fuel was comprised of 0, 25, 50, 75 and 100% (by volume) of ethanol. Tests were run at 1.5, 3.8 and 7.5 bar NIMEP and two speeds (1500 and 2500 rpm). The main species identified with pure gasoline were partial reaction products (e.g. methane and ethyne) and aromatics, whereas with ethanol/gasoline mixtures, substantial amounts of ethanol and acetaldehyde were detected. Indeed, using pure ethanol, 74% of total HC moles were oxygenates. In addition, the molar ratio of ethanol to acetaldehyde was determined to be 5.5 to 1. The amount (as mole fraction of total HC moles) of exhaust aromatics decreased linearly with increasing ethanol in the fuel, while oxygenate species correspondingly increased.
Journal Article

Selective Catalytic Reduction for Treating the NOx Emissions from Lean-Burn Gasoline Engines: Durability Assessment

2008-04-14
2008-01-0811
A laboratory study was performed to assess the potential of using selective catalytic reduction (SCR) with NH3 to treat the NOx emissions from lean-burn gasoline engines. A primary concern was the potential for hot rich exhaust conditions on the vehicle, as such conditions could degrade the zeolite-based SCR catalysts being developed for automotive applications. Samples of an iron/zeolite formulation were aged for 34 hours behind samples of a three-way catalyst (TWC) on a pulse-flame combustion reactor using different A/F ratio schedules that exposed the catalysts to either continuously lean operation, mostly stoichiometric operation, or mostly rich operation. For each A/F ratio schedule, separate SCR samples were aged with inlet temperatures of 750°C, 800°C, or 850°C. The aged SCR samples were evaluated for NOx conversion at 25K hr-1 during lean temperature ramps with 500 ppm NO and NH3.
Technical Paper

Selective Catalytic Reduction Control with Multiple Injectors

2017-03-28
2017-01-0943
Over the past decade urea-based selective catalytic reduction (SCR) has become a leading aftertreatment solution to meet increasingly stringent Nitrogen oxide (NOx) emissions requirements in diesel powertrains. A common trend seen in modern SCR systems is the use of "split-brick" configurations where two SCR catalysts are placed in thermally distinct regions of the aftertreatment. One catalyst is close-coupled to the engine for fast light-off and another catalyst is positioned under-floor to improve performance at high space velocities. Typically, a single injector is located upstream of the first catalyst to provide the reductant necessary for efficient NOx reduction. This paper explores the potential benefit, in terms of improved NOx reduction, control of NH3 slip or reduced reductant consumption, of having independently actuated injectors in front of each catalyst.
Technical Paper

Reducing Catalyst Zone Flow for Robust Emissions Performance in the Presence of Engine Air Fuel Ratio Imbalance

2017-03-28
2017-01-0961
In recent years, the EPA has implemented a requirement for monitoring the air fuel ratio balance in multi-cylinder engines such that those imbalances may not be so great as to cause the tailpipe emissions level to exceed 1.5 times the nominal emissions standard. Such imbalances may be the result of production fuel injector variation, contamination, leaks, or other malfunctions which cause the air or fuel rate to vary across the cylinders controlled by a single oxygen sensor. For many diagnostic systems that rely on the signal from the oxygen sensor, to achieve compliance to the new diagnostic standard, the sensor must see the signal from each cylinder equally. The aftertreatment system must also be robust to individual cylinder air fuel ratio variation. This paper introduces the concept of catalyst zone flow, a condition in which different cylinders of a multi-cylinder engine use different portions of the catalyst brick.
X