Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Vaporization and Turbulence Characteristics of High Pressure Gasoline Sprays Impinging on a Wall

2019-12-19
2019-01-2247
To get a better understanding of the characteristics of the high pressure gasoline sprays impinging on a wall, a fundamental study was conducted in a high-temperature high-pressure constant volume vessel under the simulated engine conditions of in-cylinder pressures, temperatures, and wall temperatures. The injection pressure was varied from 20 to 120 MPa. The spray tip penetration, vapor mass distribution, and vaporization rate were quantitatively measured with the laser absorption-scattering (LAS) technique. The velocity fields of the wall-impinging sprays under vaporizing conditions were measured with the particle image velocimetry (PIV) technique using silicone oil droplets as tracers. The effects of injection pressure and spray/wall interactions on spray characteristics were investigated. The results showed that the increased injection pressure improved penetration, vaporization, and turbulence of the sprays.
Technical Paper

Thixomolding® of Magnesium Automotive Components

1998-02-23
980087
Thixomolding® produces net-shape parts from Magnesium alloys in a single step process involving high speed injection molding of semi-solid thixotropic alloys. A description of the process and status of commercial developments will be presented.. The mechanical properties and microstructures of Thixomolded® AZ-91D magnesium materials will be presented. Tensile strengths of semi-solid AZ-91D at both room temperature and elevated temperatures ( 373K, 423K) are compared with die cast AZ-91D. Data on enhanced creep properties of Thixomolded® AZ91-D alloy relative to die cast AZ-91D will be examined with respect to relative changes in microstructural features. Controlling the percent solids in the semi-solid state prior to injection molding can lead to improved creep performance for use in net-shape automotive components.
Technical Paper

Study of BioRID II Sled Testing and MADYMO Simulation to Seek the Optimized Seat Characteristics to Reduce Whiplash Injury

2004-03-08
2004-01-0336
Development of anti-whiplash technology is one of the hottest issues in the automotive safety field because of the frequent occurrence of rear impact accidents. We analyzed the whiplash mechanism and conducted a study to seek the optimized seat characteristics with BioRID II and MADYMO simulations. A parameter study was made to construct a conceptual theory to decrease NIC, Neck Injury Criteria, with the MADYMO model. As a result of the study, head restraint position and seatback stiffness were found to affect dummy movement and injury values. Applying the NIC mechanism and the influential parameters to the MADYMO model, the optimized seat characteristics for whiplash prevention were obtained.
Technical Paper

Investigation of Increase in Aerodynamic Drag Caused by a Passing Vehicle

2018-04-03
2018-01-0719
On-road turbulences caused by sources such as atmospheric wind and other vehicles influence the flow field and increases the drag in a vehicle. In this study, we focused on a scenario involving a passing vehicle and investigated its effect on the physical mechanism of the drag increase in order to establish a technique for reducing this drag. Firstly, we conducted on-road measurements of two sedan-type vehicles passed by a truck. Their aerodynamic drag estimated from the base pressure measurements showed different increment when passed by the truck. This result raised the possibility of reducing the drag increase by a modification of the local geometry. Then, we conducted wind tunnel measurements of a simplified one-fifth scale vehicle model in quasi-steady state, in order to understand the flow mechanism of the drag increase systematically.
Journal Article

Flow Structures above the Trunk Deck of Sedan-Type Vehicles and Their Influence on High-Speed Vehicle Stability 2nd Report: Numerical Investigation on Simplified Vehicle Models using Large-Eddy Simulation

2009-04-20
2009-01-0006
In the present study, two kinds of simplified vehicle models, which can reproduce flow structures around the two sedan-type vehicles in the previous study, are constructed for the object and the unsteady flow structures are extracted using Large-Eddy Simulation technique. The numerical results are validated in a stationary condition by comparing the results with a wind-tunnel experiment and details of steady and unsteady flow characteristics around the models, especially above the trunk deck, are investigated. In quasi- and non- stationary manner with regard to vehicle pitch motion, unsteady flow characteristics are also investigated and their relations to an aerodynamic stability are discussed.
Journal Article

Flow Structures above the Trunk Deck of Sedan-Type Vehicles and Their Influence on High-Speed Vehicle Stability 1st Report: On-Road and Wind-Tunnel Studies on Unsteady Flow Characteristics that Stabilize Vehicle Behavior

2009-04-20
2009-01-0004
This study shows an example in which the conventional aerodynamic evaluation method that focuses on “steady” aerodynamic lift coefficient is not necessarily sufficient to evaluate vehicle's straight-ahead stability at high speed, and proposes a new aerodynamic evaluation method for vehicle stability. In vehicle development, it is generally said that vehicle with lower aerodynamic lift coefficient has better straight-ahead stability at high speed. However, in some cases, straight-ahead stability differs between two vehicles with similar low aerodynamic lift coefficient. It is natural to think that this variation is caused by the difference of suspension characteristics or vehicle body rigidity. But from our experiences, different straight-ahead stability was observed between two vehicles having same suspension characteristics, same vehicle body rigidity and almost similar aerodynamic lift coefficient, but different vehicle configurations.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

2003-03-03
2003-01-1314
Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Evaluation and Analysis of Strength of All-Ceramic Swirl Chamber for Diesel Engines

1800-01-01
871205
An all-ceramic swirl chamber has been developed and analyses and evaluations concerning the strength of silicon nitride ceramic (Si3N4) have been performed with a view to using it for the entire internal wall surface of the swirl chamber. The strength characteristics of Si3N4 and their effect and variation have been determined. On the basis of measurements and analyses of thermal stresses, assembling stresses, etc., investigation of the most suitable construction and assembling methods to reduce load stresses on ceramic, and various kinds of duration tests, the swirl chamber has been confirmed to have the required durability. This engine was found to comply with the 1987 U.S. diesel particulate regulation.
Technical Paper

Development of Shape Fixing Press Forming Technology for High Strength Steel Sheet

2003-10-27
2003-01-2825
New press forming method was developed for ensuring shape-accuracy of draw parts with high strength steel sheet(HSS) of very high tensile strength such as 780MPa. In the new method, step drawing method was combined with crash forming method by applying cam flange die structure to drawing dies. Furthermore, the die structure in the method is simple. At the trial press-forming by the model die even with 780MPa high strength steel sheets, the side wall warps in particular were restrained within a specified tolerance, that is ±0.00067[1/mm] of the variation of curvature(Δ 1/ ρ). Now the method is applied to press-forming some automotive body parts, such as front side member, etc.
Technical Paper

Development of Module Carriers by Injection Molding with Long Glass-Fiber Reinforced Polypropylene

2003-03-03
2003-01-0791
We have developed injection molding technologies consist of a new high-strength long-glass fiber reinforced polypropylene (PPLGF). They are key technologies of new modular design for substantial reductions of weight and cost, offering integrated functionality. The strength of injection molded parts are three times stronger than that of the conventional material. This technology makes it possible to replace parts from steel stamping and press molded glass-mat reinforced polypropylene. The front end and door modules of Mazda 6 employ the module carriers using this material, resulting in dramatic weight and cost savings.
Technical Paper

Development of Integrated Functions Module Carriers by Injection Molding with Long Glass Fiber Reinforced Polypropylene

2003-10-27
2003-01-2810
We have developed injection molding technologies consist of a new high-strength long-glass fiber reinforced polypropylene (PPLGF). They are key technologies of new modular design for substantial reductions of weight and cost, offering integrated functionality. The strength of injection molded parts are three times stronger than that of the conventional material. This technology makes it possible to replace parts from steel stamping and press molded glass-mat reinforced polypropylene. The front end and door modules of Atenza / Mazda6, Demio / Mazda2, RX-8 employs the module carriers using this material, resulting in dramatic weight and cost savings. (Fig. 1)
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Aerodynamics Evaluation of Road Vehicles in Dynamic Maneuvering

2016-04-05
2016-01-1618
A road vehicle’s cornering motion is known to be a compound motion composed mainly of forward, sideslip and yaw motions. But little is known about the aerodynamics of cornering because little study has been conducted in this field. By clarifying and understanding a vehicle’s aerodynamic characteristics during cornering, a vehicle’s maneuvering stability during high-speed driving can be aerodynamically improved. Therefore, in this study, the aerodynamic characteristics of a vehicle’s cornering motion, i.e. the compound motion of forward, sideslip and yaw motions, were investigated. We also considered proposing an aerodynamics evaluation method for vehicles in dynamic maneuvering. Firstly, we decomposed cornering motion into yaw and sideslip motions. Then, we assumed that the aerodynamic side force and yaw moment of a cornering motion could be expressed by superposing linear expressions of yaw motion parameters and those of sideslip motion parameters, respectively.
Technical Paper

Aerodynamic Pitching Stability of Sedan-Type Vehicles Influenced by Pillar-Shape Configurations

2013-04-08
2013-01-1258
The present study investigated the aerodynamic pitching stability of sedan-type vehicles under the influence of A- and C-pillar geometrical configurations. The numerical method used for the investigation is based on the Large Eddy Simulation (LES) method. Whilst, the Arbitrary Lagrangian-Eulerian (ALE) method was employed to realize the prescribed pitching oscillation of vehicles during dynamic pitching and fluid flow coupled simulations. The trailing vortices that shed from the A-pillar and C-pillar edges produced the opposite tendencies on how they affect the aerodynamic pitching stability of vehicles. In particular, the vortex shed from the A-pillar edge tended to enhance the pitching oscillation of vehicle, while the vortex shed from the C-pillar edge tended to suppress it. Hence, the vehicle with rounded A-pillar and angular C-pillar exhibited a higher aerodynamic damping than the vehicle with the opposite A- and C-pillars configurations.
X