Refine Your Search

Topic

Search Results

Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Technical Paper

Use of CAE Methods for Optimization of Polypropylene Structural Components in Automotive Applications

2000-12-01
2000-01-3163
Since their introduction in automobiles, polymeric materials have enabled designers and engineers to differentiate products based on performance attributes, mechanical response, aesthetics, and manufacturing techniques. A large segment of these applications utilizes polypropylene (PP) resins. One of the attractive features of PP polymers is the ability to tailor their mechanical, thermal and processing performance envelope via modification of their composition and the addition of fillers. Key to the successful application of PP resins in structural systems is the ability of designers and engineers to understand the material response and to properly model the behavior of PP structures upon different mechanical and thermal loading conditions.
Technical Paper

Transverse Anisotropic Modeling of Honeycomb Extruded Polypropylene Foam in LS-Dyna to Optimize Energy Absorption Countermeasures

2005-04-11
2005-01-1222
To meet automotive legal, consumer and insurance test requirements, the process for designing energy absorption countermeasures usually comprises Finite Element simulations of the specified test. Finite element simulations are used first to see if there is a need for an Energy Absorption countermeasure at all and if so, what type, material and shape. A widely used class of energy absorption countermeasures in automotive interior applications is honeycomb extruded polypropylene foams (HXPP). Under compression, these foams exhibit a constant plateau stress until late densification. This enables these foams to minimize packaging space for a given amount of energy to be absorbed or maximize energy absorption for a given packaging space. Robust and easy to use isotropic CAE material models have been developed for HXPP, however the true material properties are anisotropic and such a material model could be necessary in some cases.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

Structural Front-End Carrier Using Long Glass Fiber Polypropylene

2002-11-19
2002-01-3563
Modular front-end carriers to pre-assemble front-end components such as cooling systems, lights, and bumper beam have been in production in different vehicles for several years. Compression molded or overmolded steel/plastic carriers have traditionally been used. The present paper explains the design, material options, and engineering optimization of a composite front-end carrier, which utilizes long glass fiber injection moldable resins and adhesively bonded steel reinforcements. Experimental evaluation of prototypes shows the system met the functional performance requirements at minimum weight.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Technical Paper

Polyurethane Foam Systems For NVH and Improved Crashworthiness

2001-04-30
2001-01-1467
Recently, automotive engineers have been looking at rigid polyurethane foam systems for the advantages their application brings to vehicle design and performance. The benefits range from NVH management achieved through effective body cavity sealing and improved structural dynamics, to enhanced vehicle crashworthiness. These benefits can be realized through application of polyurethane foam systems designed for energy management. These systems offer multifunctional, low cost solutions to traditional approaches and can be modeled early in the vehicle design stage. In many cases, the overall vehicle mass is reduced as reinforcements are eliminated and/or sheet metal thickness is decreased. Dow Automotive has developed a family of water blown polyurethane foams specifically for these applications. Development has focused on foam systems designed for impact optimization, allowing OEM's to optimize the body structure content.
Technical Paper

Optimization Methods Applied to Determine Clamping Forces in Fixture Design

1999-03-01
1999-01-0414
This paper presents an optimization technique for clamping forces determination in fixture design. First, the finite element analysis (FEA) is applied to determine the coefficients of compliant matrix of a fixture-workpiece system subjected to machining and clamping forces. Then, a nonlinear optimization model is constructed in terms of the FEA results and mechanical and geometrical constraints. The optimization model is derived to determine the feasible clamps under the corresponding force effects. The optimal magnitude and direction of clamping forces minimize the workpiece deformation at particular key points. Finally, a scaled engine block with the 3-2-1 fixturing principle is given as an example.
Technical Paper

Multivariate Robust Design

2005-04-11
2005-01-1213
In a complex system, large numbers of design variables and responses are involved in performance analysis. Relationships between design variables and individual responses can be complex, and the outcomes are often competing. In addition, noise from manufacturing processes, environment, and customer misusage causes variation in performance. The proposed method utilizes the two-step optimization process from robust design and performs the optimization on multiple responses using Hotelling's T2 statistic. The application of the T2-statistic allows the use of univariate tools in multiple objective problems. Furthermore, the decomposition of T20 into a location component, T2M and a dispersion component, T2D substitutes a complex multivariate optimization process with the simpler two-step procedure. Finally, using information from the experiment, a multivariate process capability estimates for the design can be made prior to hardware fabrication.
Technical Paper

Multiple Solutions by Performance Band: An Effective Way to Deal with Modeling Error

2004-03-08
2004-01-1688
Robust optimization usually requires numerous functional evaluations, which is not feasible when the functional evaluation is time-consuming. Examples in automobile industry include crash worthiness/safety and fatigue life simulations. In practice, a response surface model (RSM) is often used as a surrogate to the CAE model, so that robust optimization can be carried out. However, if the error in the RSM is significant, the solution based on the RSM can be invalid. This paper proposes a method of finding multiple candidate solutions, all of which have similar predicted performances. This approach is effective in finding the close-to-optimum solutions when the model has error, and providing design alternatives. Examples are provided to illustrate the method.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Glass Drop Design for Automobile Windows - Design of Glass Contour, Shape, Drop Motion, and Motion Guidance Systems

1995-04-01
951110
This paper presents a new computerized approach for designing the automobile window glass contour, the glass drop motion, and the regulator systems. The three-dimensional geometrical relationship of the glass contour, the drop path, and its guidance system have been studied. Methods for barrel and helical drops are presented for optimizing the glass profile and drop path trajectories. Criteria for perfecting the glass contour are developed for shaping the profile of the vehicle clay model. Methods for correcting the glass contour and shape are presented. Examples are provided to illustrate how to improve the design. This approach integrates the development works of glass contour, drop motion and regulator systems. Through this design approach the window glass can fit and move perfectly in the door assembly.
Technical Paper

Front Suspension Multi-Axis Testing

1987-11-01
872255
A front suspension laboratory test procedure was developed to reproduce time-correlated fatigue damaging events from a light truck road durability test. Subsequently, the performance of front suspension systems for the GMT 400 light truck program were evaluated in terms of customer reliability. Both prototype and pilot testing, as well as computer modeling, were used in the evaluation.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Development of Skin Thermal Transducer for Automotive Applications

1997-05-19
971855
This paper summarizes the design, development, fabrication, validation, and application of a new device called the Skin Thermal Transducer (STT). The development of this instrument was driven by the demand for reliable information on human skin temperatures during contact with a warm surface on the interior of an automobile. The primary technology that enabled the development of the STT was the thermo-electric cooler (TEC) in combination with a heat sink that is used to simulate the core temperature of the human body. The STT was validated with human skin data and the agreement was within an acceptable range. The STT provides the automotive engineer with a measuring device to optimize and validate the underbody regions of the vehicle with respect to occupant thermal comfort. The STT can also be applied to optimize other automotive and non-automotive products in which the human skin touches a warm surface.
Technical Paper

Design Synthesis of Suspension Architecture for the 1997 Chevrolet Corvette

1997-02-24
970092
This paper describes the hardware execution of the front and rear suspensions of the all new 1997 Chevrolet Corvette. Topics covered include: alternative design trade-off, mass optimization, alignment and trim, structural interfaces, shared components, component design and a review of the overall design of the front and rear suspensions. Two case studies are detailed for the front upper and rear lower control arms. The systems engineering process used for suspension design is described throughout the paper.
Technical Paper

Counter-Gravity Casting Process for Making Thinwall Steel Exhaust Manifolds

1997-02-24
970920
Casting technology developmentshave led to a manufacturing process that allows the casting of thin wall (2-3mm) heat resistant ferritic stainless steel exhaust manifolds which can replace stamped and tubular weldments as well as iron castings where temperature requirements are increased. This casting process combines the thin wall and clean metal benefits of the counter gravity, vacuum-assist casting process using thin, light-weight bonded sand molds supported by vacuum-ridgidized sand. This combination is called the LSVAC (Loose Sand Vacuum Assisted Casting) process, a patented process. This process will significantly contribute to the growth of near-net shape steellstainless steel castings for automotive and allied industries. For exhaust manifolds, a modified grade of ferritic stainless steel with good oxidation resistance to 950°C in high dew point synthetic exhaust gas atmospheres was developed.
Journal Article

Composite Thermal Model for Design of Climate Control System

2014-04-01
2014-01-0687
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available.
Technical Paper

Application of Hydroformed Aluminum Extrusions to Vehicle Sub-Frame with Varied Wall Thickness

1999-09-28
1999-01-3180
In a typical hydroforming operation, a round tube of constant wall thickness is bent into the overall shape desired for the final part, then placed between a pair of dies. Despite some small percentage of stretch that may occur as the tube expands, the wall thickness in the original tube is therefore substantially constant at all points. In some circumstances, a part is locally thickened or reinforced for extra strength. Normally, this is achieved by using a separate piece of reinforcement at selected location. In this paper, it is intended to present a unique method to achieve an optimal structural design allowing thin or thick gages where required along its cross-section. This is done via hydroforming an aluminum extrusion tube to an optimal frame structure having varied wall thickness to satisfy various loading requirements at a minimum weight. The engine cradle is used as an example to demonstrate this methodology.
X