Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Progress in Camless Variable Valve Actuation with Two-Spring Pendulum and Electrohydraulic Latching

2013-04-08
2013-01-0590
Camless Variable Valve Actuation (VVA) technologies have been known for improving fuel economy, reducing emissions, and enhancing engine performance. VVA can be divided into electro-magnetic, electro-hydraulic, and electro-pneumatic actuation. A family of camless VVA designs (called LGD-VVA or Gongda-VVA) has been presented in an earlier SAE publication (SAE 2007-01-1295) that consists of a two-spring actuation, a bypass passage, and an electrohydraulic latch-release mechanism. The two-spring pendulum system is used to provide efficient conversion between the moving mass kinetic energy and the spring potential energy for reduced energy consumption and to be more robust to the operational temperature than the conventional electrohydraulic actuation; and the electrohydraulic mechanism is intended for latch-release function, energy compensation and seating velocity control.
Technical Paper

Numerical Simulations in a High Swirl Methanol-Fueled Directly-Injected Engine

2003-10-27
2003-01-3132
Three-dimensional transient simulations using KIVA-3V were conducted on a 4-stroke high-compression ratio, methanol-fueled, direct-injection (DI) engine. The engine had two intake ports that were designed to impart a swirling motion to the intake air. In some cases, the intake system was modified, by decreasing the ports diameter in order to increase the swirl ratio. To investigate the effect of adding shrouds to the intake valves on swirl, two sets of intake valves were considered; the first set consisted of conventional valves, and the second set of valves had back shrouds to restrict airflow from the backside of the valves. In addition, the effect of using one or two intake ports on swirl generation was determined by blocking one of the ports.
Technical Paper

Camless Variable Valve Actuator with Two Discrete Lifts

2015-04-14
2015-01-0324
Camless Variable Valve Actuation (VVA) technologies have been known for improving fuel economy, reducing emissions, and enhancing engine performance. VVA can be divided into electro-magnetic, electro-hydraulic, and electro-pneumatic actuation. This paper presents an electro-hydraulic VVA design (called GD-VVA-2) that offers continuously variable timing and two discrete lifts (low lift S1 and high lift S2). The lift control is achieved through a lift control sleeve, which is hydraulically switched between two mechanically defined positions to provide accurate lifts. The low lift S1 has a wide design range, anywhere between zero and the high lift S2, i.e., 0 < S1 < S2. If S1 ≥ 0.5*S2, engine valves may operate at the low lift during most of a typical drive cycle. Operation at the low lift reduces energy consumption significantly. The GD-VVA-2 design offers compact package size and reasonable energy consumption.
Technical Paper

An Investigation of Fluid Flow During Induction Stroke of a Water Analog Model of an IC Engine Employing LIPA

1995-02-01
950726
This paper presents results from experiments performed in an axisymmetric water analog model of a four-stroke IC engine using the optical velocimetry technique LIPA (Laser Induced Photochemical Anemometry). The investigation can be described as a fundamental scientific inquiry into the fluid dynamics encountered during engine operation, with the long term goal of increasing performance. An application of LIPA to a fluid dynamics problem delivers two-dimensional fields of velocity vectors which are projections of the full three-dimensional vectors in single measurement steps. From an evaluation of a velocity field vorticity information can be obtained readily. Velocity fields and vorticity distributions are, in this study, the basis for the evaluation of seven parametric quantities. Some of these may become tools that give engineers ‘rule of thumb’ indications of the mixing that is occurring.
X