Refine Your Search

Topic

Author

Search Results

Technical Paper

A CAE Study on Side Doors Inner Panel Deflection under Glass Stall Up Forces

2017-11-07
2017-36-0205
Not only well-functioning, but also the way operating everyday items "feel", gauges costumer perception of an automobile robustness. To prevent costumer dissatisfaction with door trim panel movement when operating power windows, deflections must be kept small. Deflections of inner panel are seen through trim panel and are responsible for giving a flimsy idea of the door. In this paper, inner panel movement for a fully stamped door in full glass stall up position is analyzed. Through CAE analyses, inner panel behavior was compared, considering different types of reinforcement for belt region.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Technical Paper

A Matrix Array Technique for Evaluation of Adhesively Bonded Joints

2012-04-16
2012-01-0475
Adhesive bonding technology is playing an increasingly important role in automotive industry. Ultrasonic evaluation of adhesive joints of metal sheets is a challenging problem in Non-Destructive Testing due to the large acoustic impedance mismatch between metal and adhesive, variability in the thickness of metal and adhesive layers, as well as variability in joint geometry. In this paper, we present the results from a matrix array of small flat ultrasonic transducers for evaluation of adhesively bonded joints in both laboratory and production environments. The reverberating waveforms recorded by the array elements are processed to obtain an informative parameter, whose two-dimensional distribution can be presented as a C-scan. Energy of the reflected waveform, normalized with respect to the energy obtained from an area with no adhesive, is a robust parameter for discriminating "adhesive/no-adhesive" regions.
Technical Paper

A semi-analytical approach for vehicle ride simulation

2008-10-07
2008-36-0048
Vehicle dynamics CAE capabilities has increased in the past few years, specially, for handling and steering attributes. However, secondary ride simulations are still highly depended on the tire model. Such tire model must be capable to simulate high order phenomenon such as impact and harshness transmissibility in three directions. In order to gather tire information sufficient to cope with these phenomena, one needs to perform a series of specific tests, and so be able to build the intended tire model. Still, there could be correlation issues. This whole process takes a lot of time and resources. This article presents a semi-analytical approach, using data gathered via wheel force transducers (WFTs) that are typically used for load cascading and durability purposes. The method main advantage is that since it relies on measured data at the wheel center, it is independent of a tire model, and, as such, it demands less time and resources.
Technical Paper

Acquisition of Transient Tire Force and Moment Data for Dynamic Vehicle Handling Simulations

1983-11-07
831790
This paper describes the issues encountered in using conventionally acquired tire test data for dynamic total vehicle handling simulations and the need for improved methodology. It describes the new test procedure that was used to acquire all three forces and three moments in a transient mode for a matrix of loads, slip and camber angles. A study of the test data supports the premises that the overturning moment, Mx, should not be neglected in dynamic simulations, and that the effects of camber should not be treated as only an independent, linearly additive, camber thrust. Instead of the conventional application of a bi-cubic regression fit to a six region data division, a new algorithm is applied. The data is divided differently into five regions in the α - Fz plane, and a variable format regression equation is applied as appropriate. The resulting regression coefficients matrix is readily usable in dynamic simulations, and is shown to have a superior curve fit to the test data.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

2012-04-16
2012-01-0229
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

Aerodynamic Drag of Engine-Cooling Airflow With External Interference

2003-03-03
2003-01-0996
This report examines the aerodynamic drag and external interference of engine cooling airflow. Much of the report is on inlet interference, a subject that has not been discussed in automotive technical literature. It is called inlet spillage drag, a term used in the aircraft industry to describe the change in inlet drag with engine airflow. The analysis shows that the reduction in inlet spillage drag, from the closed front-end reference condition, is the primary reason why cooling drag measurements are lower than would be expected from free stream momentum considerations. In general, the free stream momentum (or ram drag) is the upper limit and overstates the cooling drag penalty. An analytical expression for cooling drag is introduced to help the understanding and interpretation of cooling drag measurements, particularly the interference at the inlet and exit.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

An Advanced Yaw Stability Control System

2017-03-28
2017-01-1556
This paper presents an advanced yaw stability control system that uses a sensor set including an inertial measurement unit to sense the 6 degrees-of-freedom motions of a vehicle. The full degree of the inertial measurement unit improves and enhances the vehicle motion state estimation over the one in the traditional electronic stability controls. The addition of vehicle state estimation leads to the performance refinement of vehicle stability control that can improve performance in certain situations. The paper provides both detailed system description and test results showing the effectiveness of the system.
Technical Paper

An Evaluation of Laminated Side Window Glass Performance During Rollover

2007-04-16
2007-01-0367
In this study, the occupant containment characteristics of automotive laminated safety glass in side window applications was evaluated through two full-scale, full-vehicle dolly rollover crash tests. The dolly rollover crash tests were performed on sport utility vehicles equipped with heat-strengthened laminated safety glass in the side windows in order to: (1) evaluate the capacity of laminated side window safety glass to contain unrestrained occupants during rollover, (2) analyze the kinematics associated with unrestrained occupants during glazing interaction and ejection, and (3) to identify laminated side window safety glass failure modes. Dolly rollovers were performed on a 1998 Ford Expedition and a 2004 Volvo XC90 at a nominal speed of 43 mph, with unbelted Hybrid II Anthropomorphic Test Devices (ATDs) positioned in the outboard seating positions.
Technical Paper

An Indirect Occupancy Detection and Occupant Counting System Using Motion Sensors

2017-03-28
2017-01-1442
This paper proposes a low-cost but indirect method for occupancy detection and occupant counting purpose in current and future automotive systems. It can serve as either a way to determine the number of occupants riding inside a car or a way to complement the other devices in determining the occupancy. The proposed method is useful for various mobility applications including car rental, fleet management, taxi, car sharing, occupancy in autonomous vehicles, etc. It utilizes existing on-board motion sensor measurements, such as those used in the vehicle stability control function, together with door open and closed status. The vehicle’s motion signature in response to an occupant’s boarding and alighting is first extracted from the motion sensors that measure the responses of the vehicle body. Then the weights of the occupants are estimated by fitting the vehicle responses with a transient vehicle dynamics model.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
Technical Paper

An Investigation into the Traction and Anti-Lock Braking System Control Design

2020-04-14
2020-01-0997
Wheel slip control is crucial to active safety control systems such as Traction Control System (TCS) and Anti-lock Braking System (ABS) that ensure vehicle safety by maintaining the wheel slip in a stable region. For this reason, a wide variety of control methods has been implemented by both researchers and in the industry. Moreover, the use of new electro-hydraulic or electro-mechanical brakes, and in-wheel electric motors allow for a more precise wheel slip control, which should further improve the vehicle dynamics and safety. In this paper, we compare two methods for wheel slip control: a loop-shaping Youla parametrization method, and a sliding mode control method. Each controller is designed based on a simple single wheel system. The benefits and drawbacks of both methods are addressed. Finally, the performance and stability robustness of each controller is evaluated based on several metrics in a simulation using a high-fidelity vehicle model with several driving scenarios.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Control of Gear Ratio and Slip in Continuously Variable Transmissions: A Model Predictive Control Approach

2017-03-28
2017-01-1104
The efficiency of power transmission through a Van Doorne type Continuously Variable Transmission (CVT) can be improved by allowing a small amount of relative slip between the engine and driveline side pulleys. However, excessive slip must be avoided to prevent transmission wear and damage. To enable fuel economy improvements without compromising drivability, a CVT control system must ensure accurate tracking of the gear ratio set-point while satisfying pointwise-in-time constraints on the slip, enforcing limits on the pulley forces, and counteracting driveline side and engine side disturbances. In this paper, the CVT control problem is approached from the perspective of Model Predictive Control (MPC). To develop an MPC controller, a low order nonlinear model of the CVT is established. This model is linearized at a selected operating point, and the resulting linear model is extended with extra states to ensure zero steady-state error when tracking constant set-points.
Technical Paper

Design Optimization of Two Combined Four-Bar Mechanisms Using the Principles of Axiomatic Design

2004-03-08
2004-01-0810
Two combined four-bar mechanisms have two functions: lift and collapse. In the current design, high effort was found for the collapse function. Axiomatic Design was used to analyze and optimize the current design. The customer domain was mapped into the functional domain by specifying customer needs in terms of functional requirements (FRs) and constraints (Cs). Design parameters (DPs) were identified in the physical domain for each functional requirement. Design matrices were then defined to characterize the product design. The two combined four-bar mechanisms have two functional requirements at the highest level: lift and collapse. The corresponding DPs are: lift four-bar linkage and collapse four-bar linkage. Through zigzagging to decompose to the next level, the design was found to be coupled. At this level, a torsion spring was selected as the DP for minimizing the lift effort.
Technical Paper

Design of the Milford Road Course

2005-04-11
2005-01-0385
The Milford Road Course is a new 2.9 mi (4.6 km), 20 turn, configurable closed course with 135 ft (41 m) of elevation change, constructed at the General Motors Proving Ground in Milford, MI, USA. This facility provides a convenient and safe venue for engineers to evaluate vehicle limit performance over extensive combinations of vertical, lateral and longitudinal acceleration at a wide range of speeds. This paper discusses the vehicle dynamics aspects of the facility design, simulation and construction.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
X