Refine Your Search

Topic

Search Results

Technical Paper

“Performance Emission Parameters Behavior of a DI Diesel Engine Using Al2O3 and TiO2 Nano Additive Biodiesel Blends”

2023-11-10
2023-28-0127
This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al2O3 and TiO2 NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al2O3 and TiO2) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel.
Technical Paper

Thermomechanical Study on Induction Preheating in Friction Stir Welding of Structural Steel Using COMSOL Software for Automotive Applications

2023-09-14
2023-28-0034
In this investigation, friction stir welding (FSW) was employed for joining HSLA steel plates (5 mm thick) of grade DMR249A in the development of light weight ship structures. This investigation aims to study the effect pre-heating temperature (PHT) on microstructure and mechanical properties of FSWed DMR249A steel-joints. The PHT of W99 tool was varied from 100 to 250°C. The optical microscopy (OM), scanning electron microscopy (SEM), and an elemental analysis of stir zone (SZ) of DMR249A steel-joint was carried out. The tensile properties, hardness and impact toughness of DMR249A steel-joints were evaluated and compared to BM and joints without PHT. Results disclosed that the DMR249A steel-joints made at PHT 100°C exhibited superior tensile properties and impact toughness compared to other joints. It is attributed to the evolution of finer acicular ferritic and upper bainitic microstructure with no debris of tool in SZ.
Technical Paper

Taguchi’s Approach to Wire Electrical Discharge Machining of Magnesium Alloy AZ31B

2023-11-10
2023-28-0136
One of the most common types of lightweight materials used in aerospace is magnesium alloy. It has a high strength-to-weight ratio and is ideal for various applications. Due to its corrosion resistance, it is commonly used to manufacture of fuselages. Unfortunately, the conventional methods of metal cutting fail to improve the performance of magnesium alloy. One amongst the most common methods used for making intricate shapes in harder materials is through Wire-Electro-Discharge (WEDM). In this study, we have used magnesium alloy as the work material. The independent factors were selected as pulse duration and peak current. The output parameters of the process are the Surface Roughness (SR) and the Material Removal Rate (MRR). Through a single aspect optimization technique, Taguchi was able to identify the optimal combination that would improve the effectiveness of the WEDM process.
Technical Paper

Simulation and Analysis of Quarter Car Model for Low Cost Suspension Test Rig

2023-11-10
2023-28-0164
This paper focuses on a low-cost simulation of a control device that automates the operation of an existing suspension test rig. The rig has a few limitations: it must be manually controlled, the load applied cannot be specified, and the deflection must be manually measured. A suspension setup can't be checked for different road profiles, either. The proposed control system in this paper effectively automates the process of suspension spring load testing at a cost that is comparable to that of a fully automated test rig on the market, while also expanding the scope of its capabilities. SIMSCAPE was used to map simulation models of both the actual test rig and the updated test rig control system. On both rigs, the results of evaluating suspension components were simulated, and the resulting graphs were compared.
Journal Article

Role of Thermo-Mechanical Treatment on Creep Deformation Behaviour of Reduced Activation Ferritic Martensitic Steel

2022-10-05
2022-28-0064
To enhance the microstructural and mechanical properties of Reduced Activation and Ferritic-Martensitic (RAFM) steel thermo mechanical treatment (TMT) was performed on as received Normalised and Tempered steel (N+T). The RAFM with 9Cr-1W-0.06Ta major alloying elements steel was used in the study in N+T and TMT conditions. The refinement in microstructure and precipitates was observed in TMT steel in comparison to N+T steel. There is a drastic improvement in mechanical properties such as hardness, tensile properties are observed without losing the ductility. The creep deformation behaviour of thermo-mechanical treated steel and N+T steel were studied at different stress levels at 823 K. The comparative creep rupture and strain properties were studied, and various creep deformation regimes were also analysed for both the conditions of steel.
Technical Paper

Preparation of Copper Zinc Tin Sulfide Thin Film Solar Cells by Chemical Synthesis

2023-11-10
2023-28-0139
Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunction solar cells. All the elements of this compound semiconductor were abundant, inexpensive, and non-toxic, hence CZTS is an alternative emerging optoelectronic material for Cu(In,Ga)Se2 and CdTe solar cells. Using the traditional spray approach, these films were effectively grown at an ideal substrate temperature of 643 K. The deposited films are found to be a kesterite structure using X-ray diffraction studies. The lattice parameters are calculated from the XRD spectrum and are found to be a = b = 5.44 Å and c = 10.86 Å. The energy band gap and optical absorption coefficient are found to be 1.50 eV and above 104 cm-1 respectively. The material exhibits p-type conductivity. After the chemical spray pyrolysis is completed, the deposited films remain on the hot plate, thus improving the films' crystallinity. A Cu2ZnSnS4 solar cell is fabricated using entirely chemical synthesis methods.
Technical Paper

Predictive Modelling and Process Parameter Prediction for Monel 400 Wire Electrical Discharge Machining for Rocket Frames

2023-11-10
2023-28-0088
Due to their inherent properties and superior performance over titanium-based materials, nickel-based superalloys are widely utilized in the manufacturing industry. Monel 400 is among them. This nickel-copper alloy possesses exceptional corrosion resistance and mechanical properties. Monel 400 is primarily utilized in the chemical industry, heat exchangers, and turbine component manufacturing. Due to the properties of Monel 400, it is deemed as hard to machine materials with the aid of conventional methods. For investigating the performance of this process, a three-level analysis was carried out. Pulse on duration and applied current at three levels are the independent parameters used for designing the experiments. In this present article, a single-response analysis technique is used which is known as Taguchi to investigate the impact of the various process parameters on the output variables.
Technical Paper

Parallel Scheduling of Machines and Tools without Tool Delay Using Symbiotic Organisms Search Algorithm

2023-11-10
2023-28-0142
This work presents a novel approach for parallel scheduling of machines and tools without tool delay in the automobile manufacturing industry using a symbiotic organisms search algorithm (SOSA). This paper proposes nonlinear mixed integer programming (MIP) formulation to model simultaneous scheduling problems. The mutualistic relationship between different species in nature inspires the proposed algorithm. It aims to optimize the scheduling process by minimizing the makespan (MSN) while ensuring no tool delay during the production process. The algorithm is implemented in a parallel computing environment to speed up the search process and handle scheduling problems. Experimental results show that the proposed approach outperforms existing methods in terms of solution quality and computational efficiency. This work offers a promising solution for real-world manufacturing scheduling problems with multiple machines and tools, often characterized by complex constraints and uncertainties.
Technical Paper

Optimization of Spark Erosion Machining of Monel 400 Alloy for Automobile Applications

2023-11-10
2023-28-0140
Monel 400, a type of nickel alloy which is adopted in numerous engineering fields, such as high-temperature devices. Owing to its better strength and thermal diffusion, it can be difficult to machine with conventional methods. In order to avoid the disadvantages of conventional methods, various advanced material removal techniques have been developed. One of these is Wire Electro Discharge Machining (WEDM). This process is an evolution of the electrical discharge method. In the process of WEDM, difficult materials with intricate forms are usually machined. In this study, the performance of this method on Monel 400 has been analyzed. The three independent variables that are considered when it comes to analyzing the performance of this process are the pulse on, the applied current, and the pulse off. The experiments were performed using the design approach of Taguchi, which involves using an L27 orthogonal array.
Technical Paper

Neural Network Model for Machinability Investigations on CNC Turning of AA5052 for Marine Applications with MQL

2022-12-23
2022-28-0515
Aluminium alloys are attracting importance in various engineering industries because of their exceptional characteristics such as strength, resistance to oxidation etc., AA5052 is an alloy that categorized under Al-Mg series, commonly adopted in anti-rust applications, especially for desalination applications because of its good corrosion resistance in seawater at temperatures up to 125°C, low cost, good thermal conductivity, and non-toxicity of its corrosion products. Minimum Quantity Lubrication (MQL) is one of the approaches that are economically affordable and also eco-friendly used in various machining operations. This present exploration details the investigation CNC turning of AA5052 alloy with conventional Tungsten Carbide (WC) tool inserts under MQL conditions. There are two different natural cutting fluids were engaged such as live oil and coconut oil.
Technical Paper

Multiple Regression Analysis for Ti-6Al-4V Wire Electrical Discharge Machining (Grade 5) for Light Weight Automobile Applications

2023-11-10
2023-28-0163
Wire Electrical Discharge Machining (WEDM) is a variant of the electrical discharge machining (EDM) process, which represents an innovative method for the removal of material from a workpiece. The aforementioned process is frequently employed for the machining of harder materials that possess intricate geometries. Titanium alloys are a class of lightweight materials that find extensive utilization in many technical applications. Titanium Grade-5 is a titanium-based alloy that exhibits enhanced mechanical strength and improved resistance to corrosion. The objective of this exploratory analysis is to establish empirical correlations between the selected input variables, namely ‘Pulse on,’ ‘Pulse off,’ and peak current, and the desired output measures, which are material removal rate and surface roughness. The experimental design employed the Taguchi method to effectively organize the combination of tests by considering input factors.
Technical Paper

Modeling and Verification of 1D Array Methyl Ammonium Lead Halide Perovskite Solar Cells for Electric Vehicles

2023-09-14
2023-28-0026
Low-dimensional materials are essential in optoelectronic, electrical, and contemporary photonics areas because of their specific properties with decreased dimensions. Low-dimensional materials are those with dimensions in the nanoscale range that are between 1 and 100 nm. Halide perovskites of low dimension can be produced inexpensively using solution-processable procedures, unlike usual semiconductor nanomaterials. Since halide perovskite in thin layers may be produced utilizing a variety of solution-based techniques like simple spin coating. It is possible to produce it with a variety of compositions using low-cost, simple, and large-scale procedures. Quantum dots, perovskite nanoplatelets, nanosheets, perovskite nanorods or nanowires, and other low-dimensional perovskites are all examples of such small-dimensional devices that have been created in a range of morphologies (two-dimensional).
Journal Article

Microstructure and Mechanical Behaviour of Dissimilar Laser Welded Joints for Automobile Applications

2022-12-23
2022-28-0548
Over the last decade the utilization of laser sources has seen a marked increase with its reducing expenses and increasing productivity. Enabling technologies such as better process knowledge, better laser sources and systems, and on-going advances in Laser Beam Welding (LBW) processing technologies have all contributed to these accomplishments which include both macro and micro component fabrication through LBW. There are various existing applications that benefit from using challenging materials together, hence integrating dissimilar metals allows us to gain their benefits at a higher level and can be applied extensively for multiple applications. Metals with different mechanical and microstructural qualities and features such as high corrosion resistance and low specific weight are commonly chosen to fabricate dissimilar joints.
Technical Paper

Machinability Studies and the Evolution of Hybrid Artificial Intelligent Tools for Advanced Machining of Nickel Alloy for Aerospace Applications

2023-11-10
2023-28-0065
Nickel-based superalloys are frequently adopted in various engineering applications, such as the production of food processing equipment, aerospace parts, and chemical processing equipment. Because of higher strength and thermal conductivity, they are often regarded as difficult-to-machine materials in certain processes. Various methods were evolved for machining the hard materials such as Nickel-based superalloys more effective. One of these is wire electrical discharge machining. In this paper, we will discuss the development of an artificial neural network model and an adaptive neuro-fuzzy inference system that can be used to predict the future performance of Wire Electrical Discharge Machining (WEDM). The paper uses the Taguchi and Analysis of Variance (ANOVA) design techniques to analyze the model’s variable input. It aims to simulate the various characteristics of the process and its predicted values.
Technical Paper

Machinability Investigations on Wire Electrical Discharge Machining of Inconel 625 by Taguchi Based Grey Approach

2023-11-10
2023-28-0124
Among the challenging materials used in high-temperature applications is Inconel 625. Due to its low thermal coefficient and greater strength, traditional methods tend to produce poor results when it comes to turning Inconel 625. In order to overcome these issues, a new approach has been proposed that utilizes unconventional techniques. WEDM is a variant of the electrical discharge manufacturing process that is commonly used in the production of complex components. It is mainly utilized for the hard to machine parts. A study on the process parameters of WEDM for the machining of Inconel 625 was performed by utilizing the analysis of Taguchi. The study focused on the various parameters of the process, such as peak current, pulse on time, and off time. The performance measures that were considered in this study included surface roughness and material removal rate. The results of the analysis revealed that the various process variables affected the performance indicators.
Technical Paper

Machinability Investigations on Ti-6Al-4V (Grade 5) Wire Electrical Discharge Machining Using Taguchi Method for Auto Parts

2023-11-10
2023-28-0144
Titanium alloys are deemed as one amongst the light weight material most preferably adopted in numerous engineering applications due to its exceptional features such as corrosive resistance and thermal strength. These alloys are predominantly used in components of IC engines such as valves and springs, connecting rods. Especially Ti-Grade 5 adopted in aircraft, automobile parts ski plates and bicycles. The preliminary goal of this present research is to optimize the machining variables for Wire Electrical Discharge Machining (WEDM) of Ti-6Al-4V (Grade 5) to accomplish improved rate of material removal and surface finish. Taguchi’s design and analysis method was chosen for devising and examining the experiments by considering input factors (pulse duration and current). An L9 OA was utilized for experimentation to analyze the various output variables, such as surface finish and material removal rate, using the response analysis of Taguchi.
Technical Paper

Machinability Analysis of PH Stainless Steel with Uncoated and Textured Tool Inserts with Minimum Quantity Lubricants

2022-12-23
2022-28-0543
The alloy investigated in this research is Precipitation Hardened Stainless Steel (PHSS) 15-5, which provides good corrosion, high strength and hardness. 15-5 Stainless Steel is extensively employed in a variety of applications, including aero plane components, high-pressure corrosive environments that include valves, fasteners, shafts, fittings and gears. In this current exploration, an analysis of the machinability of PHSS is analyzed with textured inserts and the outcomes as compared to conventional inserts. To increase the machinability conditions, two distinct types of textures were produced on the rake face of the tool inserts and employed for this machining procedure utilizing a Wire Electric Discharge Machine (WEDM).The dimensions of the textures were cut on the trial-and-error method. Three different machining parameters with three different levels were chosen. Cutting Speed, feed rate and depth of cut were chosen as the input parameters.
Technical Paper

Investigations on the Effects of Chemical Treatment on Mechanical Properties of Thespesia Lampas Fiber Reinforced Composites for Automobile Applications

2023-11-10
2023-28-0121
In today's world, there is an increasing emphasis on the responsible use of fiber reinforced materials in the automobile applications, construction of buildings, machinery, and appliances as these materials are effectively reused, recycled, or disposed with minimum impact on the environment. As such, it has become mandatory to incorporate sustainable, environmental friendly and green concepts in the development of new materials and processes. The primary objective of this study is to manufacture composites using fibers obtained from Thespesia Lampas plants, which are known for their soft, long fibers that are commonly used in various domestic products. The composites are made by combining these fibers with a general purpose polyisocyanurate resin, and their potential applications in both domestic and commercial products are explored. To evaluate the properties of these composites, tests are conducted for tensile strength, flexure, and water absorption.
Technical Paper

Investigations on advanced Joining Method for Inconel 718 and SS304 Dissimilar Joints

2022-10-05
2022-28-0345
Modern automobile applications such as petrol, diesel, and gaseous fuel injection system use dissimilar Inconel 718 (IN718) and Stainless Steel 304 (SS 304) joints. IN 718 is a precipitation-hardened austenitic nickel-based superalloy with exceptional qualities such as high strength, resistance to corrosion, greater toughness, as well as resistance to thermal induced fatigue at elevated temperatures (between 150 and 1500oC), while SS 304 is a T 300 Series austenitic stainless steel alloy that can be used successfully in wide range of applications due to greater resistance to corrosion, good high and low temperature strength and ductility with excellent weld ability and formability. To get a better understanding of the mechanical characteristics of these heterogeneous weldments, these alloy joints were created using laser beam welding, one of the most modern joining techniques for high-strength materials.
Technical Paper

Investigations on Wire Electrical Discharge Machining of Magnesium Alloy for Automobile Parts

2023-11-10
2023-28-0155
Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current.
X