Refine Your Search

Topic

Search Results

Technical Paper

Thermomechanical Study on Induction Preheating in Friction Stir Welding of Structural Steel Using COMSOL Software for Automotive Applications

2023-09-14
2023-28-0034
In this investigation, friction stir welding (FSW) was employed for joining HSLA steel plates (5 mm thick) of grade DMR249A in the development of light weight ship structures. This investigation aims to study the effect pre-heating temperature (PHT) on microstructure and mechanical properties of FSWed DMR249A steel-joints. The PHT of W99 tool was varied from 100 to 250°C. The optical microscopy (OM), scanning electron microscopy (SEM), and an elemental analysis of stir zone (SZ) of DMR249A steel-joint was carried out. The tensile properties, hardness and impact toughness of DMR249A steel-joints were evaluated and compared to BM and joints without PHT. Results disclosed that the DMR249A steel-joints made at PHT 100°C exhibited superior tensile properties and impact toughness compared to other joints. It is attributed to the evolution of finer acicular ferritic and upper bainitic microstructure with no debris of tool in SZ.
Technical Paper

Taguchi’s Approach to Wire Electrical Discharge Machining of Magnesium Alloy AZ31B

2023-11-10
2023-28-0136
One of the most common types of lightweight materials used in aerospace is magnesium alloy. It has a high strength-to-weight ratio and is ideal for various applications. Due to its corrosion resistance, it is commonly used to manufacture of fuselages. Unfortunately, the conventional methods of metal cutting fail to improve the performance of magnesium alloy. One amongst the most common methods used for making intricate shapes in harder materials is through Wire-Electro-Discharge (WEDM). In this study, we have used magnesium alloy as the work material. The independent factors were selected as pulse duration and peak current. The output parameters of the process are the Surface Roughness (SR) and the Material Removal Rate (MRR). Through a single aspect optimization technique, Taguchi was able to identify the optimal combination that would improve the effectiveness of the WEDM process.
Journal Article

Role of Thermo-Mechanical Treatment on Creep Deformation Behaviour of Reduced Activation Ferritic Martensitic Steel

2022-10-05
2022-28-0064
To enhance the microstructural and mechanical properties of Reduced Activation and Ferritic-Martensitic (RAFM) steel thermo mechanical treatment (TMT) was performed on as received Normalised and Tempered steel (N+T). The RAFM with 9Cr-1W-0.06Ta major alloying elements steel was used in the study in N+T and TMT conditions. The refinement in microstructure and precipitates was observed in TMT steel in comparison to N+T steel. There is a drastic improvement in mechanical properties such as hardness, tensile properties are observed without losing the ductility. The creep deformation behaviour of thermo-mechanical treated steel and N+T steel were studied at different stress levels at 823 K. The comparative creep rupture and strain properties were studied, and various creep deformation regimes were also analysed for both the conditions of steel.
Technical Paper

Preparation of Copper Zinc Tin Sulfide Thin Film Solar Cells by Chemical Synthesis

2023-11-10
2023-28-0139
Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunction solar cells. All the elements of this compound semiconductor were abundant, inexpensive, and non-toxic, hence CZTS is an alternative emerging optoelectronic material for Cu(In,Ga)Se2 and CdTe solar cells. Using the traditional spray approach, these films were effectively grown at an ideal substrate temperature of 643 K. The deposited films are found to be a kesterite structure using X-ray diffraction studies. The lattice parameters are calculated from the XRD spectrum and are found to be a = b = 5.44 Å and c = 10.86 Å. The energy band gap and optical absorption coefficient are found to be 1.50 eV and above 104 cm-1 respectively. The material exhibits p-type conductivity. After the chemical spray pyrolysis is completed, the deposited films remain on the hot plate, thus improving the films' crystallinity. A Cu2ZnSnS4 solar cell is fabricated using entirely chemical synthesis methods.
Technical Paper

Predictive Modelling and Process Parameter Prediction for Monel 400 Wire Electrical Discharge Machining for Rocket Frames

2023-11-10
2023-28-0088
Due to their inherent properties and superior performance over titanium-based materials, nickel-based superalloys are widely utilized in the manufacturing industry. Monel 400 is among them. This nickel-copper alloy possesses exceptional corrosion resistance and mechanical properties. Monel 400 is primarily utilized in the chemical industry, heat exchangers, and turbine component manufacturing. Due to the properties of Monel 400, it is deemed as hard to machine materials with the aid of conventional methods. For investigating the performance of this process, a three-level analysis was carried out. Pulse on duration and applied current at three levels are the independent parameters used for designing the experiments. In this present article, a single-response analysis technique is used which is known as Taguchi to investigate the impact of the various process parameters on the output variables.
Technical Paper

Optimizing Concurrent Scheduling of Machines and Tools in a Flexible Manufacturing System with Alternating Machines Using the Flower Pollination Algorithm

2023-11-10
2023-28-0141
This paper examines the concurrent scheduling of machines and tools with machines in a multi-machine flexible manufacturing system (FMS) with the aim of minimizing the makespan in automobile manufacturing industry. Due to the high cost of tools in FMS, each type of tool has only one duplicate in circulation. To reduce the cost of duplicating tools on each machine, a central tool magazine (CTM) is used to store and share tools among several machines. The main challenge in this scenario is to allocate machines from alternate machines and tools to job operations in a way that minimizes the make span. To address this problem, the article proposes a mixed nonlinear integer programming formulation and a Flower Pollination Algorithm (FPA). The results show that the FPA outperforms existing algorithms and using alternate machines for operations can reduce the make span.
Technical Paper

Neural Network Model for Machinability Investigations on CNC Turning of AA5052 for Marine Applications with MQL

2022-12-23
2022-28-0515
Aluminium alloys are attracting importance in various engineering industries because of their exceptional characteristics such as strength, resistance to oxidation etc., AA5052 is an alloy that categorized under Al-Mg series, commonly adopted in anti-rust applications, especially for desalination applications because of its good corrosion resistance in seawater at temperatures up to 125°C, low cost, good thermal conductivity, and non-toxicity of its corrosion products. Minimum Quantity Lubrication (MQL) is one of the approaches that are economically affordable and also eco-friendly used in various machining operations. This present exploration details the investigation CNC turning of AA5052 alloy with conventional Tungsten Carbide (WC) tool inserts under MQL conditions. There are two different natural cutting fluids were engaged such as live oil and coconut oil.
Technical Paper

Multiple Regression Analysis for Ti-6Al-4V Wire Electrical Discharge Machining (Grade 5) for Light Weight Automobile Applications

2023-11-10
2023-28-0163
Wire Electrical Discharge Machining (WEDM) is a variant of the electrical discharge machining (EDM) process, which represents an innovative method for the removal of material from a workpiece. The aforementioned process is frequently employed for the machining of harder materials that possess intricate geometries. Titanium alloys are a class of lightweight materials that find extensive utilization in many technical applications. Titanium Grade-5 is a titanium-based alloy that exhibits enhanced mechanical strength and improved resistance to corrosion. The objective of this exploratory analysis is to establish empirical correlations between the selected input variables, namely ‘Pulse on,’ ‘Pulse off,’ and peak current, and the desired output measures, which are material removal rate and surface roughness. The experimental design employed the Taguchi method to effectively organize the combination of tests by considering input factors.
Journal Article

Microstructure and Mechanical Behaviour of Dissimilar Laser Welded Joints for Automobile Applications

2022-12-23
2022-28-0548
Over the last decade the utilization of laser sources has seen a marked increase with its reducing expenses and increasing productivity. Enabling technologies such as better process knowledge, better laser sources and systems, and on-going advances in Laser Beam Welding (LBW) processing technologies have all contributed to these accomplishments which include both macro and micro component fabrication through LBW. There are various existing applications that benefit from using challenging materials together, hence integrating dissimilar metals allows us to gain their benefits at a higher level and can be applied extensively for multiple applications. Metals with different mechanical and microstructural qualities and features such as high corrosion resistance and low specific weight are commonly chosen to fabricate dissimilar joints.
Technical Paper

Machinability Studies and the Evolution of Hybrid Artificial Intelligent Tools for Advanced Machining of Nickel Alloy for Aerospace Applications

2023-11-10
2023-28-0065
Nickel-based superalloys are frequently adopted in various engineering applications, such as the production of food processing equipment, aerospace parts, and chemical processing equipment. Because of higher strength and thermal conductivity, they are often regarded as difficult-to-machine materials in certain processes. Various methods were evolved for machining the hard materials such as Nickel-based superalloys more effective. One of these is wire electrical discharge machining. In this paper, we will discuss the development of an artificial neural network model and an adaptive neuro-fuzzy inference system that can be used to predict the future performance of Wire Electrical Discharge Machining (WEDM). The paper uses the Taguchi and Analysis of Variance (ANOVA) design techniques to analyze the model’s variable input. It aims to simulate the various characteristics of the process and its predicted values.
Technical Paper

Machinability Investigations on Wire Electrical Discharge Machining of Inconel 625 by Taguchi Based Grey Approach

2023-11-10
2023-28-0124
Among the challenging materials used in high-temperature applications is Inconel 625. Due to its low thermal coefficient and greater strength, traditional methods tend to produce poor results when it comes to turning Inconel 625. In order to overcome these issues, a new approach has been proposed that utilizes unconventional techniques. WEDM is a variant of the electrical discharge manufacturing process that is commonly used in the production of complex components. It is mainly utilized for the hard to machine parts. A study on the process parameters of WEDM for the machining of Inconel 625 was performed by utilizing the analysis of Taguchi. The study focused on the various parameters of the process, such as peak current, pulse on time, and off time. The performance measures that were considered in this study included surface roughness and material removal rate. The results of the analysis revealed that the various process variables affected the performance indicators.
Technical Paper

Machinability Analysis of PH Stainless Steel with Uncoated and Textured Tool Inserts with Minimum Quantity Lubricants

2022-12-23
2022-28-0543
The alloy investigated in this research is Precipitation Hardened Stainless Steel (PHSS) 15-5, which provides good corrosion, high strength and hardness. 15-5 Stainless Steel is extensively employed in a variety of applications, including aero plane components, high-pressure corrosive environments that include valves, fasteners, shafts, fittings and gears. In this current exploration, an analysis of the machinability of PHSS is analyzed with textured inserts and the outcomes as compared to conventional inserts. To increase the machinability conditions, two distinct types of textures were produced on the rake face of the tool inserts and employed for this machining procedure utilizing a Wire Electric Discharge Machine (WEDM).The dimensions of the textures were cut on the trial-and-error method. Three different machining parameters with three different levels were chosen. Cutting Speed, feed rate and depth of cut were chosen as the input parameters.
Technical Paper

Investigations on the Effects of Chemical Treatment on Mechanical Properties of Thespesia Lampas Fiber Reinforced Composites for Automobile Applications

2023-11-10
2023-28-0121
In today's world, there is an increasing emphasis on the responsible use of fiber reinforced materials in the automobile applications, construction of buildings, machinery, and appliances as these materials are effectively reused, recycled, or disposed with minimum impact on the environment. As such, it has become mandatory to incorporate sustainable, environmental friendly and green concepts in the development of new materials and processes. The primary objective of this study is to manufacture composites using fibers obtained from Thespesia Lampas plants, which are known for their soft, long fibers that are commonly used in various domestic products. The composites are made by combining these fibers with a general purpose polyisocyanurate resin, and their potential applications in both domestic and commercial products are explored. To evaluate the properties of these composites, tests are conducted for tensile strength, flexure, and water absorption.
Technical Paper

Investigations on advanced Joining Method for Inconel 718 and SS304 Dissimilar Joints

2022-10-05
2022-28-0345
Modern automobile applications such as petrol, diesel, and gaseous fuel injection system use dissimilar Inconel 718 (IN718) and Stainless Steel 304 (SS 304) joints. IN 718 is a precipitation-hardened austenitic nickel-based superalloy with exceptional qualities such as high strength, resistance to corrosion, greater toughness, as well as resistance to thermal induced fatigue at elevated temperatures (between 150 and 1500oC), while SS 304 is a T 300 Series austenitic stainless steel alloy that can be used successfully in wide range of applications due to greater resistance to corrosion, good high and low temperature strength and ductility with excellent weld ability and formability. To get a better understanding of the mechanical characteristics of these heterogeneous weldments, these alloy joints were created using laser beam welding, one of the most modern joining techniques for high-strength materials.
Technical Paper

Investigations on Wire Electrical Discharge Machining of Magnesium Alloy for Automobile Parts

2023-11-10
2023-28-0155
Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current.
Technical Paper

Investigational Analysis on Wire Electrical Discharge Machining of Aluminium Based Composites by Taguchi’s Method

2023-11-10
2023-28-0075
A wide range of engineering domains, such as aeronautical, automobiles, and marine, rely on the use of Metal Matrix Composites (MMC). Due to the excellent properties, such as hardness and strength, Aluminum base MMC are generally adopted in various uses. Due to the increasing number of reinforcement materials being added to the MMC, its properties are expected to improve. In this exploratory analysis, an effort was given to develop a new aluminium-based MMC. The analysis of the machinability of the composite was also performed. The process of creating a new MMC using a stir casting technique was carried out. It resulted in a better and more reinforced composite than its base materials. The reinforcement materials were fabricated using different weight combinations and process parameters, such as the temperature and duration required to stir. Due to the improved properties of the composite, the traditional machining method is not feasible for machining of these materials.
Technical Paper

Investigation on Formability of Tailored AA7075 Thin Sheets by Friction Stir Processes

2022-10-05
2022-28-0349
TWBs (tailored welded blanks) technology can open new avenues for obtaining components in the automotive, aerospace and electronics industries. Friction stir process (FSP) can control the properties by deep localized plastic deformation using the non-consumable tool. In this study, the primary objective is to investigate the effects of Graphene nanoparticles (GNPs) in AA7075 material and the effect of FSP graphene NPs on the forming limit curve of the TWBs through experiments. The micrographs of the weldment are obtained by metallography practices. Tensile specimens are separated for evaluating FSP weld zones. Obtained results exhibits the formability limit of AA7075 thin sheets and decrease FSP thin sheets formability as compared with the formability of base metals
Technical Paper

Finite Element Analysis of Graphene Based Solar Photonic Battery for Electric Vehicle

2023-09-14
2023-28-0021
The sun has tremendous potential to address the world’s increasing energy needs, but the increased cost of employing lunar power is a considerable hurdle when equated to more conventional energy sources. The low energy density and low conversion efficiency of solar radiation, expensive raw materials, and labor-intensive manufacturing process all contribute to the high cost of a photovoltaic system. In the last ten years, advances in nano science and nanotechnology have opened up new possibilities for the creation of effective solar cells. Designing semiconductor, metal, and polymer nanostructure designs for solar cells has become possible. Understanding the methods involved in the photovoltaic energy conversion like optical and electrical process, has also benefited from theoretical and modelling studies. The high price and insufficient efficiency of current solar cells prevent the widespread usage of solar energy.
Technical Paper

Evolution of Regression and Neural Network Models on Wire Electrical Discharge Machining of Nickel Based Superalloy

2023-11-10
2023-28-0078
In addition to traditional methods, there are also non-traditional techniques that can be used to overcome the challenges of conventional metal working. One such technique is wire electrical discharge (WEDM). This type of advanced manufacturing process involves making complex shapes using materials. Utilizing intelligent tools can help a company meet its goals. Nickel is a hard metal to machine for various applications such as nuclear, automobile and aerospace. Due its high thermal conductivity and strength, traditional methods are not ideal when it comes to producing components using this material. This paper aims to provide a comprehensive analysis of the various steps in the development of a neural network model for the manufacturing of Inconel 625 alloy which is used for specific applications such as exhaust couplings in sports motor vehicle engines. The study was conducted using a combination of computational and experimental methods.
Technical Paper

Development of Regression Models for Laser Beam Welding of Inconel 718 Alloy Thin Sheets

2022-10-05
2022-28-0340
Inconel 718 is a superalloy made from nickel that has exceptional mechanical properties. It has been widely used in the manufacturing of various components such as nuclear and aerospace aircraft. Due to its exceptional corrosion resistance, this material can be utilized in various environments. Due to the increasing number of challenges that come with conventional methods of welding, the use of advanced techniques has been developed to produce better and sound quality joints. One of these is Laser Beam Welding (LBW) technique. This method utilizes a high-intensity beam to create a better and more quality weld joints with improved mechanical properties. This study aims to develop multiple regression models that can be used to analyze the performance of laser beam welding on Inconel 718 alloy joints.
X