Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Effects of Trip Length and Oil Type (Synthetic Versus Mineral Oil) on Engine Damage and Engine-Oil Degradation in a Driving Test of a Vehicle with a 5.7L V-8 Engine

1993-10-01
932838
Extending engine-oil-change intervals is of interest from the standpoint of reducing used oil disposal and reducing time and expense of maintenance. However, the oil must be changed before serious oil degradation and engine damage occur. Three variables which influence oil degradation were chosen for investigation: base oil composition (synthetic oil versus mineral oil), trip length (short trips versus long trips), and driving schedule (degrading an oil during a given type of service, then changing to another type of service without an intervening oil change). Analysis of oil samples taken throughout the testing program indicated that type of service (freeway compared to short trip) influenced oil degradation to a greater extent than oil type. That is, API SG-quality synthetic oil in short-trip service degraded faster than borderline SG-quality mineral oil in long-trip service.
Technical Paper

Predictive Engine Spark Timing Control

1994-03-01
940973
In this paper, new event-based engine control algorithms utilizing more than one reference pulse per cylinder firing event are designed for improved engine spark timing control. These control algorithms, based on the cyclic nature of the internal combustion engines, can achieve more accurate estimation of crankshaft rotational speed and position than conventional algorithms. The application of these prediction algorithms to improve the accuracy of engine spark timing control is demonstrated using a dynamic engine simulation.
Technical Paper

Heavy Truck Safety-What We Know

1985-04-01
851191
The overall highway fatality rate has dropped almost contintinously since 1925, from 20 to 2.5 per hundred million miles of travel in 1984. Still, the almost 44, 000 fatalities in 1984 can, and will, be decreased. In 1983, 5, 475 of the 42, 584 highway fatalities were in accidents involving medium or heavy trucks. Only 18% of these were occupants of the trucks themselves. 82% were pedestrians or occupants of the “other vehicle.” The greatest number of combination truck accidents take place on two-lane rural roads. Single-vehicle accidents are responsible for 70% of heavy truck occupant fatalities. Doubles and heavier trucks appear to be as safe as other heavy trucks. Rollover and ejection are responsible for the greatest number of truck occupant fatalities.
Technical Paper

Heavy Truck Safety-What We Know

1985-01-01
856106
The overall highway fatality rate has dropped almost continuously since 1925, from 20 to 2.5 per 100 million miles of travel in 1984. Still, the almost 44,000 fatalities in 1984 can and will be decreased. In 1983, 5,475 of the 42,584 highway fatalities were in accidents involving medium or heavy trucks. Only 18 percent of these were occupants of the trucks themselves; 82 percent were pedestrians or occupants of the other vehicle. The greatest number of combination truck accidents takes place on two-lane rural roads. Single-vehicle accidents are responsible for 70 percent of heavy truck occupant fatalities. Doubles and heavier trucks appear to be as safe as other heavy trucks. Rollover and ejection are responsible for the greatest number of truck occupant fatalities. When asked about her top priority as the new Secretary of Transportation, Mrs. Dole replied, “There's no higher mandate for the Department than to promote safety….”
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Dibutyl Maleate and Tripropylene Glycol Monomethyl Ether Diesel Fuel Additives to Lower NOx Emissions

2005-04-11
2005-01-0475
A previous paper reported (SAE Paper 2002-01-2884) that it was possible to decrease mode-weighted NOx emissions compared to the OEM calibration with corresponding increases in particulate matter (PM) emissions. These PM emission increases were partially overcome with the use of oxygenated diesel fuel additives. We wanted to know if compounds of toxicological concern were emitted more or less using oxygenated diesel fuel additives that were used in conjunction with a modified engine operating strategy to lower engine-out NOx emissions. Emissions of toxicologically relevant compounds from fuels containing triproplyene glycol monomethyl ether and dibutyl maleate were the same or lower compared to a low sulfur fuel (15 ppm sulfur) even under engine operating conditions designed to lower engine-out NOx emissions.
Technical Paper

Automotive Noise and Vibration Control Practices in the New Millennium

2003-05-05
2003-01-1589
The approaches used to develop an NVH package for a vehicle have changed dramatically over the last several years. New noise and vibration control strategies have been introduced, new materials have been developed, advanced testing techniques have been implemented, and sophisticated computer modeling has been applied. These approaches help design NVH solutions that are optimized for cost, performance, and weight. This paper explains the NVH practices available for use in designing vehicles for the new millennium.
Technical Paper

Automotive Applications Using A Robust Design Approach

1999-03-01
1999-01-1029
Robust design approaches can be applied to create designs that are insensitive to input variation so that they work almost all the time, regardless of manufacturing and operating conditions. In this paper, the performances of two automotive designs - a steering column and a deck lid system - are significantly improved by using the robust design approach through mathematical optimization. For each design, calculation of the performance indices, the formulation, and results of the optimization problem are presented.
Technical Paper

Applications of Optimization Techniques in Automotive Design

1997-11-17
973233
Optimization techniques can be applied to synthesize the design of automotive systems and components to meet product requirements. In this paper, the performance of two automotive designs - a rear suspension system and a clip shape - was improved by using optimization techniques. For each design, calculation of the performance indices and the formulation of the optimization problem are discussed.
Technical Paper

A Method for Simulation of GD&T Specifications

1997-04-08
971541
A method is proposed for simulating the effects of dimensional variation from geometric dimensioning and tolerancing (GD&T) specifications. The method converts GD&T specifications into equivalent covariance matrices which are needed in the statistical simulation of random processes. Examples are given to show how the method can be implemented.
Technical Paper

A Generic Model for Analysis and Optimization of Fuel Filler Door with Torsional Spring

1997-04-08
971540
A mathematical model was developed for the analysis of a fuel filler door with a torsional spring. The model calculates performance indices such as opening and closing forces, kinetic energy during opening and closing and the maximum spring stress. The model was integrated with an optimization program. Two types of optimization problems were formulated: the traditional problem which does not include the effects of random design parameters, and the stochastic type optimization, which does. An example shows how the mathematical model, in conjunction with optimization techniques, can help determine fuel filler door designs.
Technical Paper

A Direct Method for Designing Fuel Filler Door with Torsional Spring

2002-11-18
2002-01-3122
A direct method is developed for designing a vehicle fuel filler door with torsional spring. The design parameters include the door's geometrical parameters and spring dimensions. The design requirements are based on the finger force curve during closing and opening, and the bending stress in the spring. An example is included to demonstrate the effectiveness of the new method.
X