Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Operator Interfaces and Network-Based Participation for Dante II

1995-07-01
951518
Dante II, an eight-legged walking robot developed by the Dante project, explored the active volcanic crater of Mount Spurr in July 1994. In this paper, we describe the operator interfaces and the network-based participation methods used during the Dante II mission. Both virtual environment and multi-modal operator interfaces provided mission support for supervised control of Dante II. Network-based participation methods including message communications, satellite transmission, and a World-Wide Web server enabled remote science and public interaction. We believe that these human-machine interfaces represent a significant advance in robotic technologies for exploration.
Technical Paper

Operator Interface Design Issues in a Low-Bandwidth and High-Latency Vehicle Teleoperation System

1995-07-01
951485
Guiding a remote vehicle when real time image transmission is not possible is an important problem in the field of teleoperation. In such a situation, it is impractical to put an operator behind a steering wheel and expect accurate steering. In semi-autonomous teleoperation, an operator designates the path that the vehicle should follow in an image of the scene transmitted from the vehicle, and the vehicle autonomously follows this path. Previous techniques for semi-autonomous teleoperation require stereo image data, or inaccurately track paths on non-planar terrain. STRIPE is a method for accurate semi-autonomous teleoperation using monocular image data. By combining techniques in computer control, artificial intelligence, and intelligent user interfaces, we are designing a unique system for remote operation of a vehicle across low-bandwidth and high-delay transmission links.
Technical Paper

Growth of Super-Dwarf Wheat on the Russian Space Station MIR

1996-07-01
961392
During 1995, we tested instruments and attempted a seed-to-seed experiment with Super-Dwarf wheat in the Russian Space Station Mir. Utah instrumentation included four IR gas analyzers (CO2 and H2O vapor, calculate photosynthesis, respiration, and transpiration) and sensors for air and leaf (IR) temperatures, O2, pressure, and substrate moisture (16 probes). Shortly after planting on August 14, three of six fluorescent lamp sets failed; another failed later. Plastic bags, necessary to measure gas exchange, were removed. Hence, gases were measured only in the cabin atmosphere. Other failures led to manual watering, control of lights, and data transmission. The 57 plants were sampled five times plus final harvest at 90 d. Samples and some equipment (including hard drives) were returned to earth on STS-74 (Nov. 20). Plants were disoriented and completely vegetative. Maintaining substrate moisture was challenging, but the moisture probes functioned well.
Technical Paper

Development and Testing of a Microwave Powered Regenerable Air Purification Technology Demonstrator

2002-07-15
2002-01-2403
Dielectric heating via microwave irradiation of contaminant laden sorbents offers distinct advantages in comparison to conventional thermal regeneration techniques. High temperatures may be achieved very rapidly because electromagnetic energy is absorbed directly by the sorbent material. A Technology Demonstrator, incorporating efficient rectangular waveguide based sorbent cartridge designs and effective microwave transmission systems was designed, fabricated and tested. Importantly, the performance of the Molecular Sieve 13X Waveguide Cartridge for the removal of water vapor, the Molecular Sieve 5A Waveguide Cartridge for the removal of CO2, and the Activated Carbon Waveguide Cartridge for removal of volatile organics from air, were each validated by successive sorption/ microwave desorption cycles.
X