Refine Your Search

Topic

Author

Search Results

Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Thermal Performance of Space Suit Elements with Aerogel Insulation for Moon and Mars Exploration

2006-07-17
2006-01-2235
Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements.
Technical Paper

Thermal Conductivity of Lofty Nonwovens in Space and Planetary Vacuum Environment

2001-07-09
2001-01-2166
For planetary exploration, new thermal insulation materials are needed to deal with unique environmental conditions presented to extravehicular activity (EVA). The thermal insulation material and system used in the existing space suit were specifically designed for low orbit environment. They are not adequate for low vacuum condition commonly found in planetary environments with a gas atmosphere. This study attempts to identify the types of lofty nonwoven thermal insulation materials and the construction parameters that yield the best performance for such application. Lofty nonwovens with different construction parameters are evaluated for their thermal conductivity performance. Three different types of fiber material: solid round fiber, hollow fiber, and grooved fiber, with various denier, needling intensity, and web density were evaluated.
Technical Paper

Thermal Analysis of Lightweight Liquid Cooling Garments Using Highly Conductive Materials

2005-07-11
2005-01-2972
This paper presents the analysis findings of a study reducing the overall mass of the lightweight liquid cooling garment (LCG). The LCG is a garment worn by crew to actively cool the body, for spacesuits and launch/entry suits. A mass reduction of 66% was desired for advanced missions. A thermal math model of the LCG was developed to predict its performance when various mass-reducing changes were implemented. Changes included varying the thermal conductivity and thickness of the garment or of the coolant tubes servicing the garment. A second model was developed to predict behavior of the suit when the cooling tubes were to be removed, and replaced with a highly-conducting (waterless) material. Findings are presented that show significant reductions in weight are theoretically possible by improving conductivity in the garment material.
Technical Paper

Regenerative Life Support Systems Test Bed Performance: Lettuce Crop Characterization

1992-07-01
921391
Two crops of lettuce (Lactuca sativa cv. Waldmann's Green) were grown in the Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center. The RLSS Test Bed is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants. The chamber encloses 10.6 m2 of growth area under cool-white fluorescent lamps. Lettuce was double seeded in 480 pots, each containing about 250 cm3 of calcined-clay substrate. Each pot was irrigated with half-strength Hoagland's nutrient solution at an average total applied amount of 2.5 and 1.8 liters pot-1, respectively, over each of the two 30-day crop tests. Average environmental and cultural conditions during both tests were 23°C air temperature, 72% relative humidity, 1000 ppm carbon dioxide (CO2), 16h light/8h dark photoperiod, and 356 μmol m-2s-1 photosynthetic photon flux.
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

Orbiter Flash Evaporator: Flight Experience and Improvements

1997-07-01
972262
The Flash Evaporator Subsystem (FES) provides active cooling for the Shuttle Orbiter vehicle during the ascent and re-entry phases of the flight and provides supplemental cooling to the radiators while on-orbit. This paper describes the design and operation of the FES and summarizes the operational flight experience to date. As the fleet of orbiters grows older, contamination and corrosion are two issues on which attention has focused. A discussion of these conditions and the subsequent design changes and operational workarounds will be summarized.
Technical Paper

Nanoscale Materials for Human Spaceflight Applications: Regenerable Carbon Dioxide Removal Using Single-wall Carbon Nanotubes

2006-07-17
2006-01-2195
The challenges of missions to the Moon and Mars presents NASA with the need for more advanced life support systems, including better technologies for CO2 removal in spacecraft atmospheres and extravehicular mobility units (EMU). Amine-coated single wall carbon nanotubes (SWCNT) have been proposed as a potential solution because of their high surface area and thermal conductivity. Initial research demonstrated the need for functionalization of SWCNT to obtain optimal adherence of the amine to the SWCNT support phase [1]. Recent efforts focus on the development of new methods to chemically bond amines to SWCNT. Synthesis and characterization methods for these materials are discussed and some preliminary materials characterization data are presented. The CO2 adsorption capacity for several versions of SWCNT supported amine-based CO2 scrubber materials is also determined.
Technical Paper

Modifications of Physiological Processes Concerning Extravehicular Activity in Microgravity

1994-06-01
941334
The incidence of DCS in null gravity appears to be considerably less than predicted by 1-g experiments. In NASA studies in 1-g, 83% of the incidents of DCS occur in the legs. We report first on a study with a crossover design that indicated a considerable reduction in the decompression Doppler bubble grade in the lower extremities in subjects in simulated microgravity (bed rest) as compared to themselves when ambulatory in unit gravity. Second we describe the results of a cardiovascular deconditioning study using a tail-suspended rat model. Since there may be a reduction in bubble production in 0-g, this would reduce the possibility of acquiring neurological DCS, especially by arterial gas embolism. Further, cardiovascular deconditioning appears to reduce the pulmonary artery hypertension (secondary to gas embolization) necessary to effect arterialization of bubbles.
Technical Paper

Mechanical Properties and Durability Study of Aerogel-Base Thermal Insulation for Advanced Space Suit

2003-07-07
2003-01-2446
Fiber-reinforced Aerogel composite insulations provide superior thermal insulation protection in both the low-earth orbit (LEO) and near-earth neighborhood planetary environments. The flexible nature and thermal properties of these materials make them the best insulation candidates for advanced space suit application. This paper reviews the properties of various Aerogel composite materials developed for NASA by Aspen Systems, Inc. Previous studies showed that the Aerogel materials retained acceptable thermal performance after some amount of mechanical cycling. The goal of the current work is to reach a complete understanding of the mechanical properties of these materials in the domain of space suit application. Hence, a good knowledge of the durability of the aerogel composites is needed. This paper presents the extensive testing program needed to determine the life of these insulations for advanced space suit application.
Technical Paper

ISRU Production of Life Support Consumables for a Lunar Base

2007-07-09
2007-01-3106
Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5°S, 0°E) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.
Technical Paper

Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

2006-07-17
2006-01-2236
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes).
Technical Paper

First Human Testing of the Orion Atmosphere Revitalization Technology

2009-07-12
2009-01-2456
A system of amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and is baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology, which was performed in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to use real human loads in the spring of 2008.
Technical Paper

First Astronaut - Rover Interaction Field Test

2000-07-10
2000-01-2482
The first ever Astronaut - Rover (ASRO) Interaction Field Test was conducted successfully on February 22-27, 1999, in Silver Lake, Mojave Desert, California in a representative surface terrain. This test was a joint effort between the NASA Ames Research Center, Moffett Field, California and the NASA Johnson Space Center, Houston, Texas to investigate the interaction between humans and robotic rovers for potential future planetary surface exploration. As prototype advanced planetary surface space suit and rover technologies are being developed for human planetary surface exploration, it is desirable to better understand the interaction and potential benefits of an Extravehiclar Activity (EVA) crewmember interacting with a robotic rover. This interaction between an EVA astronaut and a robotic rover is seen as complementary and can greatly enhance the productivity and safety of surface excursions.
Technical Paper

Equivalent System Mass of Producing Yeast and Flat Breads from Wheat Berries, A Comparison of Mill Type

2004-07-19
2004-01-2525
Wheat is a candidate crop for the Advanced Life Support (ALS) system, and cereal grains and their products will be included on long-term space missions beyond low earth orbit. While the exact supply scenario has yet to be determined, some type of post-processing of these grains must occur if they are shipped as bulk ingredients or grown on site for use in foods. Understanding the requirements for processing grains in space is essential for incorporating the process into the ALS food system. The ESM metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The objective of this study was to compare the impact of grain mill type on the ESM of producing yeast and flat breads. Hard red spring wheat berries were ground using a Brabender Quadrumat Jr. or the Kitchen-Aid grain mill attachment (both are proposed post-harvest technologies for the ALS system) to produce white and whole wheat flour, respectively.
Technical Paper

Development of a Gravity Independent Nitrification Biological Water Processor

2003-07-07
2003-01-2560
Biological water processors are currently being developed for application in microgravity environments. Work has been performed to develop a single-phase, gravity independent anoxic denitrification reactor for organic carbon removal [1]. As a follow on to this work it was necessary to develop a gravity independent nitrification reactor in order to provide sufficient nitrite and nitrate to the organic carbon oxidation reactor for the complete removal of organic carbon. One approach for providing the significant amounts of dissolved oxygen required for nitrification is to require the biological reactor design to process two-phase gas and liquid in micro-gravity. This paper addresses the design and test results overview for development of a tubular, two-phase, gravity independent nitrification biological water processor.
Technical Paper

Demonstration of Oxygen Production on the Moon and Mars

1997-07-01
972498
Scientists and engineers at NASA are currently developing flight instruments which will demonstrate oxygen production on the Moon and Mars. REGA will extract oxygen from the lunar regolith, measure implanted solar wind and indigenous gases, and monitor the lunar atmosphere. MIP will demonstrate oxygen production on Mars, along with key supporting technologies including filtration, atmospheric acquisition and compression, thermal management, solar cell performance, and dust removal.
Technical Paper

Comparison of Equivalent System Mass (ESM) of Yeast and Flat Bread Systems

2003-07-07
2003-01-2618
The Equivalent System Mass (ESM) metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The food system of a Mars mission may encompass a large percentage of total mission ESM, and decreasing this ESM would be beneficial. Yeast breads were made using three methods (hand & oven, bread machine, mixer with dough hook attachment & oven). Flat breads were made using four methods (hand & oven, hand & griddle, mixer with dough hook attachment & oven, mixer with dough hook attachment & griddle). Two formulations were used for each bread system (scratch ingredients, commercial mix). ESM was calculated for each of these scenarios. The objective of this study was to compare the ESM of yeast and flat bread production for a Martian surface outpost. Method (equipment) for both types of bread production was demonstrated to be the most significant influence of ESM when one equipment use was assumed.
Technical Paper

Comparison Studies of Candidate Nutrient Delivery Systems for Plant Cultivation in Space

1997-07-01
972304
A reliable nutrient delivery system is essential for long-term cultivation of plants in space. At the Kennedy Space Center, a series of ground-based tests are being conducted to compare candidate plant nutrient delivery systems for space. To date, our major focus has concentrated on the Porous Tube Plant Nutrient Delivery System, the ASTROCULTURE™ System, and a zeoponic plant growth substrate. The merits of each system are based upon the performance of wheat supported over complete growth cycles. To varying degrees, each system supported wheat biomass production and showed distinct patterns for plant nutrient uptake and water use.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
X