Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation Studies of the GRNTRN Code for Radiation Transport

2007-07-09
2007-01-3118
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

2006-08-30
2006-01-2429
Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Space Radiation Exposure Mitigation: Study of Select Materials

2006-07-17
2006-01-2103
The development of “next generation” human-rated space vehicles, surface habitats and rovers, and spacesuits will require the integration of low-cost, lightweight materials that also include excellent mechanical, structural, and thermal properties. In addition, it is highly desirable that these materials exhibit excellent space radiation exposure mitigation properties for protection of both the crew and onboard sensitive electronics systems. In this paper, we present trapped electron and proton space radiation exposure computational results for a variety of materials and shielding thicknesses for several earth orbit scenarios that include 1) low earth orbit (LEO), 2) medium earth orbit (MEO), and 3) geostationary orbit (GEO). We also present space radiation exposure (galactic cosmic radiation and solar particle event) results as a function of selected materials and thicknesses.
Technical Paper

Shielding Transmission Validation with Solid State Detectors

2003-07-07
2003-01-2331
As shielding materials are developed for protection against the hazards of galactic cosmic rays, it is desirable to develop a protocol for rapid assessment of shielding properties. Solid state energy loss detectors are often used to estimate the charge and energy of particles in ion beam experiments. The direct measurement is energy deposited in the detector. As a means of separating the charge components in typical shield transmission studies with observation, a stack of many such detectors is used. With high-energy beams and thin targets, surviving primaries and fragments emerging from the target have nearly-equal velocities and deposited energy scales with the square of the charge, simplifying the data analysis. The development of a transport model for the shield and detector arrangement and evaluation of prediction of the energy loss spectrum for direct comparison with the experimentally derived data allows a rapid assessment of the shield transmission characteristics.
Technical Paper

Review of NASA Antiskid Braking Research

1982-02-01
821393
NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flight tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.
Technical Paper

Recent Developments of Experimental Techniques and Their Applications at NASA Langley Research Center

1994-03-01
940419
The need for highly accurate measurements of velocity, temperature, pressure and density has required the development of new experimental techniques. While the majority of these development efforts at NASA Langley are focused toward applications for aeronautical programs such as the High-Speed Civil Transport, Advanced Subsonic Transport, and the National Aero-Space Plane, a number are applicable to other fields. The intent of this paper is to review recent instrumentation developments and applications at NASA Langley Research Center that may have applications in automotive testing. Five experimental techniques are described along with recent results obtained in NASA facilities.
Technical Paper

Radiation Environment Modeling for the Planet Mars

2005-07-11
2005-01-2832
In view of manned missions targeted to Mars, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows the determination of the particle flux and spectra at any time at any point of the Martian surface. With this goal in mind, a new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particle environments computed for Martian conditions are transported within the Mars atmosphere, with temporal properties modeled with variable timescales, down to the surface, with topography and backscattering patterns taken into account. The atmospheric chemical and isotopic composition has been modeled over results from the in-situ Viking Lander measurements for both major and minor components.
Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

2019-06-10
2019-01-2028
High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
Technical Paper

Performance Automotive Applications of Pressure-Sensitive Paint in the Langley Full Scale Tunnel

2002-12-02
2002-01-3291
Recently, there has been a strong emphasis on aerodynamic and aeroacoustic wind tunnel testing of automobiles. While significant level resources have been spent on investigating aerodynamics, the methodology has not changed appreciably since the beginning of aerodynamics as a science. Over the past decade, a number of global flow diagnostic techniques have been developed that drastically increase the quality and quantity of data from wind tunnel testing. One of these technologies is the use of pressure sensitive luminescent coatings, known as pressure-sensitive paint, a method which has matured considerably since its inception and is now used extensively in aerospace applications with good results. The goal of this research is to implement this technology in the full scale testing of high performance automotive vehicles. This paper discusses the details of a preliminary test, such as technique, paint formulation, camera and lighting hardware, and data reduction and analysis.
Technical Paper

Parametric Shielding Strategies for Jupiter Magnetospheric Missions

2005-07-11
2005-01-2834
Judicious shielding strategies incorporated in the initial spacecraft design phase for the purpose of minimizing deleterious effects to onboard systems in intense radiation environments will play a major role in ensuring overall mission success. In this paper, we present parametric shielding analyses for the three Jupiter Icy Moons, Callisto, Ganymede, and Europa, as a function of time in orbit at each moon, orbital inclination, and various thicknesses, for low- and high-Z shielding materials. Trapped electron and proton spectra using the GIRE (Galileo Interim Radiation Electron) environment model were generated and used as source terms to both deterministic and Monte Carlo high energy particle transport codes to compute absorbed dose as a function of thickness for aluminum, polyethylene, and tantalum. Extensive analyses are also presented for graded-Z materials.
Technical Paper

Overview of Noise Reduction Technology in the NASA Short Haul (Civil Tiltrotor) Program

1996-11-18
962273
Noise is a barrier issue for penetration of civil markets by future tiltrotor aircraft. To address this issue, elements of the NASA Short Haul (Civil Tiltrotor) [SH(CT)] program are working in three different areas: noise abatement, noise reduction, and noise prediction. Noise abatement refers to modification of flight procedures to achieve quieter approaches. Noise reduction refers to innovative new rotor designs that would reduce the noise produced by a tiltrotor. Noise prediction activities are developing the tools to guide the design of future quiet tiltrotors. This paper presents an overview of SH(CT) activities in all three areas, including sample results.
Technical Paper

Nuclear Radiation Fields on the Mars Surface: Risk Analysis for Long-term Living Environment

2005-07-11
2005-01-2833
Mars, our nearest planet outward from the sun, has been targeted for several decades as a prospective site for expanded human habitation. Background space radiation exposures on Mars are expected to be orders of magnitude higher than on Earth. Recent risk analysis procedures based on detailed dosimetric techniques applicable to sensitive human organs have been developed along with experimental data regarding cell mutation rates resulting from exposures to a broad range of particle types and energy spectra. In this context, simulated exposure and subsequent risk for humans in residence on Mars are examined. A conceptual habitat structure, CAD-modeled with duly considered inherent shielding properties, has been implemented. Body self-shielding is evaluated using NASA standard computerized male and female models.
Journal Article

Noise Control Capability of Structurally Integrated Resonator Arrays in a Foam-Treated Cylinder

2017-06-05
2017-01-1765
Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
Technical Paper

Next Generation NASA GA Advanced Concept

2006-08-30
2006-01-2430
Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.
Technical Paper

Neutrons in Space: Shield Models and Design Issues

2000-07-10
2000-01-2414
The normal working and living areas of the astronaut are designed to provide an acceptable level of protection against the hazards of ionizing space radiation. Attempts to reduce the exposures require intervening shield materials to reduce the transmitted radiation. An unwelcome side effect of the shielding is the production of neutrons, which are themselves dangerous particles that can be (but are not always) more hazardous than the particles that produced them. This is especially true depending on the choice of shield materials. Although neutrons are not a normal part of the space environment, they can be a principle component of astronaut exposure in the massive spacecraft's required for human space travel and habitation near planetary surfaces or other large bodies of material in space.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

NASA Aerodynamic Research Applicable to Business Aircraft

1971-02-01
710378
A review is made of NASA aerodynamic research of interest to the designer of business aircraft. The results of wind-tunnel and flight studies of several current aircraft are summarized. The attainment of STOL performance is discussed and the effectiveness of several lift augmentation concepts is examined. Finally, the potentialities and problems of flight at and beyond the speed of sound are discussed.
X