Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Road Simulation Testing, Correlation and Variability

2005-04-11
2005-01-0856
In this paper, responses from a vehicle's suspension, chassis and body, are used to demonstrate a methodology to optimize physical test results. It is well known that there is a variability effect due to an increase of wheel unsprung mass (due to loads measurement fixturing), tire pressure, speed, etc. This paper quantifies loading variability due to Wheel Force Transducer (WFT) unsprung mass by using a rainflow cycle counting domain. Also, presents a proving ground-to-test correlation study and the data reduction techniques that are used in road simulation test development to identify the most nominal road load measurement. Fundamental technical information and analytical methodology useful in overall vehicle durability testing are discussed. Durability testing in a laboratory is designed to correlate fatigue damage rig to road. A Proving Ground (PG) loading history is often acquired by running an instrumented vehicle over one or more PG events with various drivers.
Technical Paper

Vehicle Powertrain Loading Simulation and Variability

2004-03-08
2004-01-1563
In this paper, loads acting on driveline components during an entire proving ground (PG) durability schedule are used to demonstrate the methodology of optimizing driveline performance reliability using both physical and computational methods. It is well known that there is an effect of driver variability on the driveline component loads. Yet, this effect has not been quantified in the past for lack of experimental data from multiple drivers and reliable data analysis methods. This paper presents the data reduction techniques that are used to identify the extreme driver performance and to extrapolate the short-term measurement to long-term data for driveline performance reliability. The driveline loading variability is made evident in the rotating moment histogram domain. This paper also introduces the concept for a simulation model to predict the driveline component loads based on a complete proving grounds schedule. A model-to-test correlation is also performed in this paper.
Technical Paper

Utilization of Advanced Three-Way Catalyst Formulations on Ceramic Ultra Thin Wall Substrates for Future Legislation

2002-03-04
2002-01-0349
The LEV II and SULEV/PZEV emission standards legislated by the US EPA and the Californian ARB will require continuous reduction in the vehicles' emission over the next several years. Similar requirements are under discussion in the European Union (EU) in the EU Stage V program. These future emission standards will require a more efficient after treatment device that exhibits high activity and excellent durabilty over an extended lifetime. The present study summarizes the findings of a joint development program targeting such demanding future emission challenges, which can only be met by a close and intensive co-operation of the individual expert teams. The use of active systems, e.g. HC-adsorber or electrically heated light-off catalysts, was not considered in this study. The following parameters were investigated in detail: The development of a high-tech three-way catalyst technology is described being tailored for applications on ultra thin wall ceramic substrates (UTWS).
Technical Paper

The Study for Structural Design of the Segmented SiC-DPF

2006-04-03
2006-01-1527
The application of Diesel Particulate Filters (DPF's) is expanding in the European, Japanese and US markets to comply with the tighter PM regulations. SiC DPF's, featuring greater robustness, have been applied extensively to passenger cars and are expanding into larger sizes for Light Duty Trucks applications. The SiC-DPF has higher mechanical strength when compared to other materials, such as Cordierite. However, SiC's thermal expansion ratio is greater. Therefore, the SiC-DPF is designed with 35 X 35mm segments and cement bonded construction, both of which function to relieve thermal stress. The appearance of the SiC-DPF with the segment design is shown in Figure 1. In this paper, the thermal stress mechanism of the segmented joint during soot regeneration and the influence of the cement properties on the thermal shock resistance was investigated by using the soot regeneration model and thermal stress analysis in addition to the engine test.
Technical Paper

The Mechanical Properties of Wheel Force Sensors and Their Impact on to the Data Collected - A Detailed Consideration of Specific Tests

2006-04-03
2006-01-0734
Based on the results of “An Evaluation of the Mechanical Properties of Wheel Force Sensors and their Impact on to the Data Collected During Different Driving Manoeuvres” Herrmann et al. (SAE Paper 05M-254) a second, detailed investigation has been started to acquire additional information. In this previous investigation, it has been found out, that a difference in mass can be clearly identified in the signals. The current paper summarizes the results of a detailed investigation, which has been performed at DaimlerChrysler Stress Lab in Auburn Hills, with a fully equipped vehicle - a set of 2/4 Wheel Force Sensors plus several acceleration sensors as well. Through careful research and testing it is expected that the differences in the dynamic behavior can be specified with better accuracy than in the previous study.
Technical Paper

The Impact of High Cell Density Ceramic Substrates and Washcoat Properties on the Catalytic Activity of Three Way Catalysts

1999-03-01
1999-01-0272
The present paper describes the results of a joint development program focussing on a system approach to meet the EURO IV emission standards for an upper class passenger car equipped with a newly developed high displacement gasoline engine. Based on the well known catalyst systems of recent V6- and V8-engines for the EURO III emission standards with a combination of close coupled catalysts and underfloor catalysts, the specific boundary conditions of an engine with an even larger engine displacement had to be considered. These boundary conditions consist of the space requirements in the engine compartment, the power/torque requirements and the cost requirements for the complete aftertreatment system. Theoretical studies and computer modeling showed essential improvements in catalyst performance by introducing thin wall substrates with low thermal inertia as well as high cell densities with increased geometric surface area.
Technical Paper

The Effect of HIP Processing on the Properties of A356 T6 Cast Aluminum Steering Knuckles

2004-03-08
2004-01-1027
Hot Isostatic Pressing (HIP) has been routinely used to densify castings for aerospace and medical applications for over 30 years. While HIP is widely known to improve the toughness and fatigue life of castings through the healing of internal porosity, it has been perceived as too expensive for most cast aluminum alloys for automotive applications. Recent developments suggest that the cost effectiveness of certain special HIP processes should be revisited due to reductions in process cost and improvements in throughput. This paper will evaluate the Densal® II process applied to a front aluminum steering knuckle. Two casting processes representing differing levels of relative cost and quality were evaluated. The first was Alcoa's VRC/PRC process, a metal mold process with bottom fill, evacuation before fill and pressurization after fill. This is considered to be a premium quality, but higher cost casting process that is already qualified for this application.
Technical Paper

The Development of a BMW Catalyst Concept for LEV/EU3 Legislation for a 8 Cylinder Engine by Using Thin Wall Ceramic Substrates

1999-03-01
1999-01-0767
For the BMW V8 engine, a new LEV/EU3 emission concept has been developed by improvements to the previous engine management and secondary air supply and a complete new exhaust system. Beside the emission limits, also high engine output targets and high operating reliability were targeted. In addition the new exhaust system had to meet low cost targets. Based on these requirements an exhaust concept with separate pre catalyst and main catalyst was chosen. To reduce the heat mass and to optimize the pressure drop, 4.3mil/400cpsi thin wall ceramic substrates were used for the pre and main catalyst.
Technical Paper

Stamping and Crush Performance of Dual Phase Steel

2001-10-16
2001-01-3074
Traditionally, high-strength low-alloy (HSLA) steel is used for automotive vehicle weight reduction in the North American automotive industry. Dual phase (DP) high strength steel has gained great attention because it provides a combination of high strength and good formability. The main advantage of DP steel is the high ratio of tensile strength to yield strength, which provides more flexibility in stamping and higher energy absorption in a component crush event. This study compares the performances of DP and HSLA steel grades in stamping processes and component crush events, as shown in a typical automotive unibody inner rail. Simulation results show that DP steel offers more uniform strain distribution, improved formability, and better crush performance than conventional HSLA steel.
Technical Paper

Semiconductor Gas Sensors as Control Monitors for NOx Storage Catalytic Converters

2002-03-04
2002-01-1095
Silicon Carbide (SiC) based high temperature semiconductor gas sensors were tested for potential applications in the closed-loop control of NOx storage catalytic converters. The exhaust gas composition behind a storage catalyst was simulated by synthetic gas mixtures supplied from a gas blending manifold. In lean oxidizing ambients the sensors produced signals opposite in sign upon the appearance of NOx on the one hand and mixtures of HC and CO on the other hand. Transient gas measurements revealed response times ranging between several milliseconds for HC and several seconds for NOx. These features render SiC based sensors potentially useful for the control of NOx storage catalytic converters.
Technical Paper

Reliability-Based Fatigue Strength Testing by the Staircase Method

2004-03-08
2004-01-1288
The staircase fatigue testing method is a recognized method for determining the fatigue limit of powertrain components. The purpose of this paper is to improve upon existing standards by adding common practices that will ensure a higher degree of statistical accuracy in the data. This includes specifying appropriate sample sizes, stress increments and initial load conditions, as well as making suggestions for appropriate methods of analyzing the data. Two methods (Dixon and Mood method and probit analysis method) are selected and compared in terms of relative percent difference on four parameters (mean, standard deviation, B10 fatigue strength and B50 fatigue strength). The staircase data are obtained by simulations from normal and lognormal fatigue limit distributions.
Technical Paper

Reaction and Diffusion Phenomena in Catalyzed Diesel Particulate Filters

2004-03-08
2004-01-0696
The objective of this study is to explain the physical and chemical mechanisms involved in the operation of a catalyzed diesel particulate filter. The study emphasizes on the coupling between reaction and diffusion phenomena (with emphasis on NO2 “back-diffusion”), based on modeling and experimental data obtained on the engine dynamometer. The study is facilitated by a novel multi-dimensional mathematical model able to predict both reaction and diffusion phenomena in the filter channels and through the soot layer and wall. The model is thus able to predict the species concentration gradients in the inlet/outlet channels, in the soot layer and wall, taking into account the effect of NO2 back diffusion. The model is validated versus engine dyno measurements. Two sets of measurements are employed corresponding to low-temperature “controlled” regenerations as well as high-temperature “uncontrolled” conditions.
Technical Paper

Prediction of Draw Bead Coefficient of Friction Using Surface Temperature

2002-03-04
2002-01-1059
Sheet metal stamping involves a system of complex tribological (friction, lubrication, and wear), heat transfer, and material strain interactions. Accurate coefficient of friction, strain, and lubrication regime data is required to allow proper modeling of the various sheet stamping processes. In addition, non-intrusive means of monitoring the coefficient of friction in production stamping operations would be of assistance for efficiently maintaining proper stamping quality and to indicate when adjustments to the various stamping parameters, including maintenance, would be advantageous. One of the key sub-systems of the sheet metal stamping process is the draw bead. This paper presents an investigation of the tribology of the draw bead using a Draw Bead Simulator (DBS) Machine and automotive zinc-coated sheet steels. The investigation and findings include: 1) A new, non-intrusive method of measuring the surface temperature of the sheet steel as it passes through the draw bead.
Technical Paper

Potential of a Low Pressure Drop Filter Concept for Direct Injection Gasoline Engines to Reduce Particulate Number Emission

2012-04-16
2012-01-1241
The automotive industry is currently evaluating the gasoline particulate filter (GPF) as a potential technology to reduce particulate emissions from gasoline direct injection (GDI) engines. In this paper, several GPF design measures which were taken to obtain a filter with lower pressure drop when compared to our previous concept will be presented. Based on engine test bench and vehicle test results, it was determined some soot will accumulate on the GPF walls, resulting in an increase in pressure drop. However, the accumulated soot will be combusted under high temperature and high O₂ concentration conditions. In a typical vehicle application, passive regeneration will likely occur and a cycle of soot accumulation and combustion might be repeated in the actual driving conditions.
Technical Paper

Performance of Next Generation Gasoline Particulate Filter Materials under RDE Conditions

2019-04-02
2019-01-0980
In order to meet the challenging CO2 targets beyond 2020 without sacrificing performance, Gasoline Direct Injection (GDI) technology, in combination with turbo charging technology, is expanding in the automotive industry. However, while this technology does provide a significant CO2 reduction, one side effect is increased Particle Number (PN) emission. As a result, from September 2017, GDI vehicles in Europe are required to meet the stringent PN emission limits of 6x1011 #/km under the Worldwide harmonized Light vehicles Test Procedure (WLTP). In addition, it is required to meet PN emission of 9x1011 #/km under Real Driving Emission (RDE) testing, which includes a Conformity Factor (CF) of 1.5 to account for current measurement inaccuracies on the road. This introduction of RDE testing in Europe and China will especially provide a unique challenge for the design of exhaust after-treatment systems due to its wide boundary conditions.
Technical Paper

Performance of Catalyzed Particulate Filters without Upstream Oxidation Catalyst

2005-04-11
2005-01-0952
The possibility to employ a single-brick system with a catalyzed filter (CDPF) for the after-treatment of diesel engines is potentially a promising and cost-effective solution. In the first part of this paper, the effectiveness of a single brick CDPF system towards reducing the gaseous CO and HC emissions is investigated experimentally and computationally. The second part of the paper deals with the behavior of single brick catalyzed filters compared with two brick systems comprising an upstream oxidation catalyst. The main differences of the two systems are highlighted in terms of regeneration efficiency and thermal loading, based on simulation results. The modeling work is based on a 3-dimensional model of the catalyzed filter and an axi-symmetric model of the oxidation catalyst. Model validations are presented based on engine bench testing.
Technical Paper

Particle Number Emission Reduction for GDI Engines with Gasoline Particulate Filters

2017-10-08
2017-01-2378
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit in EU of 6x10 sup 12 #/km, which will be further reduced by one order of magnitude to 6x10 sup 11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
Technical Paper

Next Generation of Ceramic Wall Flow Gasoline Particulate Filter with Integrated Three Way Catalyst

2015-04-14
2015-01-1073
A Particle Number (PN) limit for Gasoline Direct Injection (GDI) vehicles was introduced in Europe from September 2014 (Euro 6b). In addition, further certification to Real Driving Emissions (RDE) is planned [1] [2], which requires low and stable emissions in a wide range of engine operation, which must be durable for at least 160,000 km. To achieve such stringent targets, a ceramic wall-flow Gasoline Particulate Filter (GPF) is one potential emission control device. This paper focuses on a catalyzed GPF, combining particle trapping and catalytic conversion into a single device. The main parameters to be considered when introducing this technology are filtration efficiency, pressure drop and catalytic conversion. This paper portrays a detailed study starting from the choice of material recipe, design optimization, engine bench evaluation, and final validation inside a standard vehicle from the market during an extensive field test up to 160,000 km on public roads.
Technical Paper

Next Generation Diesel Particulate Filter for Future Tighter HDV/NRMM Emission Regulations

2022-03-29
2022-01-0545
Heavy Duty Vehicle (HDV) Diesel emission regulations are set to be tightened in the future. The introduction of PN PEMS testing for Euro VI-e, and the expected tightening of PM/NOx targets set to be introduced by CARB in the US beyond 2024 are expected to create challenging tailpipe PN conditions for OEMs. Additionally, warranty and the useful life period will be extended from current levels. Improved fuel efficiency (reduction of CO2) also remains an important performance criteria. Furthermore, future non-road diesel emission regulations may follow tighten HDV diesel emission regulations contents, and non-road cycles evaluation needs to be considered as well for future. In response to the above tightened regulation, for Diesel Particulate Filter (DPF) technologies will require higher PN filtration performance, lower pressure drop, higher ash capacity and better pressure drop hysteresis for improved soot detectability.
Technical Paper

New Particulate Filter Concept to Reduce Particle Number Emissions

2011-04-12
2011-01-0814
Gasoline Direct Injection (GDI) engines achieve better fuel economy but have the drawback of increased Particulate Matter (PM) emissions. As known from diesel engine applications particulate filters are an effective PM reduction device which is expected to be effective for reduction of particulates emitted by GDI engines as well. For this investigation new filter concepts especially designed for GDI applications are proposed. Filtration efficiency, pressure drop and regeneration performance were verified by cold flow bench and engine and chassis dynamometer testing. The experimental data were used to discuss the validity of these new filter design concepts.
X