Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Experimental Study of the Air Flow Produced by Road Vehicles and its Potential Destabilizing Effect on Nearby Pedestrians

2007-04-16
2007-01-0758
The air movement produced by various types of road vehicles has been experimentally determined in order to evaluate the potential of this air flow to destabilize nearby pedestrians. Six vehicles are used, as small as an automobile and as large as a tractor-trailer combination, driven at speeds ranging from 20 to 50 mph (23 to 80 kph), at distances to sensors of two to six feet (0.6 to 1.8 m), in order to quantify some of the chaotic effects of the air motion generated by these vehicles, and specifically, what destabilizing effect it can have on nearby pedestrians. For each combination of testing variables, the peak air speed, relative temporal gust occurrence, and settling time to ambient conditions were measured. The results are analyzed, and a discussion is provided regarding the relation of factors, such as vehicle speed and the distance to the speed sensor, to the magnitude of the maximum air speed recorded.
Technical Paper

Fluid Load Analysis within the Static Roll Model

2000-12-04
2000-01-3476
Cargo load movement in cylindrical tanks is incorporated into the static roll model (SRM) implemented in Microsoft® Excel. A “generalized ellipse” equation allows a variety of cylindrical tank profiles to be analyzed. For a partially filled tank, the locus of the cargo center of gravity (CG) locations is determined as a function of the cargo surface slope. The cargo is then modeled as a single point mass that moves along a curved guide shaped as the obtained CG locus in the vertical plane. The cargo CG location is determined iteratively in a Visual Basic routine that surrounds the current Microsoft® Excel based solution technique thereby creating a transparent solution approach for the user.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
X