Refine Your Search

Topic

Author

Search Results

Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

The Role of Skull Fractures in Short Duration Head Impacts

1987-02-23
870321
Head injuries are considered a significant safety problem for vehicle occupants involved in vehicle crashes. Although medical literature on the subject is extensive, the emphasis is mainly on the clinical and studies frequently involve data samples that are not representative to the vehicle occupant population. Also, research efforts on head injury have focused on the head rotational acceleration mechanism. The effect of head contact on brain injuries has not been adequately acknowledged and there has been disagreement regarding skull fracture and its relationship to brain injury. The human head, being an extremely complex structure, has many independent injury modes which cannot be described satisfactorily by a single brain injury mechanism. Many individual pathophysiological disturbances to the skull and its contents together comprise head injuries.
Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
Technical Paper

The New Car Assessment Program Has It Led to Stiffer Light Trucks and Vans over the Years?

1999-03-01
1999-01-0064
Since model year 1983, one hundred and seventy five light trucks, vans, and sport utility vehicles (LTVs) have been included in the New Car Assessment Program (NCAP) frontal crash tests. In this frontal test, vehicles are crashed at 35 mph such that the entire front impacts against a rigid, fixed barrier. Instrumented anthropometric dummies are placed in the driver and right front passenger seats. Accelerometers are placed on the vehicle to record the response of the structure during the crash. A number of recent papers have examined the compatibility of LTVs and cars in vehicle-to-vehicle collisions. The studies in these papers, generally, consider three factors for vehicle-to-vehicle compatibility: (1) mass, (2) stiffness, and (3) geometry. On June 5, 1998, Transport Canada and the National Highway Traffic Safety Administration held a forum entitled “Transport-NHTSA International Dialogue on Vehicle Compatibility,” in Windsor, Canada.
Technical Paper

The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year Old

2016-11-07
2016-22-0017
When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA’s in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Z-axis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading.
Technical Paper

Response Corridors of Human Surrogates in Lateral Impacts

2002-11-11
2002-22-0017
Thirty-six lateral PMHS sled tests were performed at 6.7 or 8.9 m/s, under rigid or padded loading conditions and with a variety of impact surface geometries. Forces between the simulated vehicle environment and the thorax, abdomen, and pelvis, as well as torso deflections and various accelerations were measured and scaled to the average male. Mean ± one standard deviation corridors were calculated. PMHS response corridors for force, torso deflection and acceleration were developed. The offset test condition, when partnered with the flat wall condition, forms the basis of a robust battery of tests that can be used to evaluate how an ATD interacts with its environment, and how body regions within the ATD interact with each other.
Technical Paper

RAID - An Investigative Tool to Study Air Bag/Upper Extremity Interactions

1997-02-24
970399
A study of frontal collisions using the NASS data base showed that there were four times as many arm injuries to belt restrained drivers who had an air bag deploy than for the drivers who were simply belted. By far, the distal forearm/hand was the most commonly injured region. Hard copy review identified two modes of arm injury related to the deploying air bag: 1) The arm is directly contacted by the air bag module and/or flap cover, and 2) The arm is flung away and contacts an interior car surface. Based on the field studies, a mechanical device called the Research Arm Injury Device (RAID) was fabricated to assess the aggressivity of air bags from different manufacturers. Results from static air bag deployment tests with the RAID suggested that the RAID was able to clearly distinguish between the aggressive and non-aggressive air bags. Maximum moments ranging between 100 Nm and 650 Nm, and hand fling velocity ranging between 30 and 120 km/h were measured on the RAID in these tests.
Journal Article

Pedestrian Lower Extremity Response and Injury: A Small Sedan vs. A Large Sport Utility Vehicle

2008-04-14
2008-01-1245
Vehicle front-end geometry and stiffness characteristics have been shown to influence pedestrian lower extremity response and injury patterns. The goal of this study is to compare the lower extremity response and injuries of post mortem human surrogates (PMHS) tested in full-scale vehicle-pedestrian impact experiments with a small sedan and a large sport utility vehicle (SUV). The pelves and lower limbs of six PMHS were instrumented with six-degree-of-freedom instrumentation packages. The PMHS were then positioned laterally in mid-stance gait and subjected to vehicle impact at 40 km/h with either a small sedan (n=3) or a large SUV (n=3). Detailed descriptions of the pelvic and lower extremity injuries are presented in conjunction with global and local kinematics data and high speed video images. Injured PMHS knee joints reached peak lateral bending angles between 25 and 85 degrees (exceeding published injury criteria) at bending rates between 1.1 deg/ms and 3.7 deg/ms.
Technical Paper

On the Synergism of the Driver Air Bag and the 3-Point Belt in Frontal Collisions

1995-11-01
952700
The number of passenger vehicles with combined 3-point belt/driver air bag restraint systems is steadily increasing. To investigate the effectiveness of this restraint combination, 48 kph frontal collisions were performed with human cadavers. Each cadaver's thorax was instrumented with a 12-accelerometer array and two chest bands. The results show, that by using a combined standard 3-point belt (6% elongation)/driver air bag, the thoracic injury pattern remained located under the shoulder belt. The same observation was found when belts with 16% elongation were used in combination with the driver air bag. Chest contours derived from the chest bands showed high local compression and deformation of the chest along the shoulder belt path, and suggest the mechanism for the thoracic injuries.
Technical Paper

NHTSA’s Vehicle Compatibility Research Program

1999-03-01
1999-01-0071
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the crash compatibility of passenger cars, light trucks and vans (LTV’s) in vehicle-to-vehicle collisions. NHTSA has conducted a series of eight full-scale vehicle-to-vehicle crash tests to evaluate vehicle compatibility issues. Tests were conducted using four bullet vehicles representing different vehicle classes striking a mid-size sedan in both side and oblique frontal crash configurations. The test results show a good correlation between vehicle aggressivity metrics and injury parameters measured in the struck car for the frontal offset tests, but not for the side impact tests.
Technical Paper

NHTSA's Frontal Offset Research Program

2004-03-08
2004-01-1169
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the use of the 40 percent offset deformable barrier (ODB) crash test procedure to reduce death and injury, in particular debilitating lower extremity injuries in frontal offset collisions. This paper presents the results of 22 ODB crash tests conducted with 50th percentile male and 5th percentile female Hybrid III (HIII) dummies fitted with advanced lower legs, Thor-Lx/HIIIr and Thor-FLx/HIIIr, to assess the potential for debilitating and costly lower limb injuries. This paper also begins to investigate the implications that the ODB test procedure may have for fleet compatibility by evaluating the results from vehicle-to-vehicle crash tests.
Technical Paper

Injury Severity in Restrained Children in Motor Vehicle Crashes

1995-11-01
952711
The paper reviews one hundred and three (103) cases of restrained children involved in motor vehicle crashes and admitted to the level I trauma center at Children's National Medical Center (CNMC). Thirty percent (30%) of these cases involved injuries with an Abbreviated InjuryScore (AIS) severity of 3 or greater. All cases are classified first by type of restraint system, i.e. infant seat, convertible seat, booster seat, lap belt, and lap and shoulder belt, and second, by type of injury sustained, i.e. head/face and neck, upper extremity, thorax, pelvic and abdominal, and lower extremity. The links between these classifications are examined to identify particular injury patterns associated with the use of individual restraint systems, e.g. the incidence of pelvic and abdominal injury associated with the use of both lap and lap and shoulder belts. For the severe injury cases the paper further examines the injury mechanisms for the most commonly observed patterns.
Technical Paper

Improving Occupant Protection Systems in Frontal Crashes

1996-02-01
960665
In the United States, air bags will be required in all passenger cars and light trucks under Federal Motor Vehicle Safety Standard (FMVSS) No. 208, Occupant Crash Protection. Even after full implementation of driver and passenger air bags as required by FMVSS No. 208, frontal impacts will still account for up to 8,000 fatalities and 120,000 moderate to critical injuries (i.e., injuries of AIS ≥ 2) [1]. The National Highway Traffic Safety Administration (NHTSA) has an ongoing research program to address these fatalities and injuries and provide a basis for the possible future upgrade of FMVSS No. 208. This effort includes developing supplementary test procedures for the evaluation of occupant injury in higher severity crashes, developing improved injury criteria including criteria for assessing injuries to additional body regions, and evaluating the injuries associated with occupant size [2, 3 and 4].
Technical Paper

Hybrid III Dummy Instrumentation and Assessment of Arm Injuries During Air Bag Deployment

1996-11-01
962417
Assessment of potential forearm fracture due to deployment of driver air bags is examined through a series of static air bag deployments with a specially instrumented Hybrid III dummy. The objective of the study was to determine the feasibility of measuring accelerations and bending moments on the Hybrid III dummy forearm as a potential injury index for arm fracture. Study of the National Accident Sampling System data has shown that in isolated circumstances, deployment of an air bag while the driver is making a turn can lead to fractures of the lower arm. To examine this phenomenon, the Hybrid III dummy was instrumented with accelerometers and strain gages to allow measurement of the accelerations and moments on the right arm. The arm was oriented over the steering wheel towards the eleven o'clock position during deployment of the air bag. Accelerations were measured on the arm at the wrist, elbow, and shoulder. Moments in two axes were measured at two locations below the elbow.
Technical Paper

Fatality and injury Reducing Effectiveness of Lap Belts for Back Seat Occupants

1987-02-23
870486
The fatality and injury reducing effectiveness of Tap belts for back seat occupants is estimated by applying the double pair comparison method to 1975-86 Fatal Accident Reporting System and 1982-85 Pennsylvania accident data. Lap belts significantly reduce the risk of fatalities by 17-26 percent, serious injuries by 37 percent, moderate to serious injuries by 33 percent and injuries of any severity by 11 percent, relative to the unrestrained back seat occupant. Lap belts are primarily effective in nonfrontal crashes because the unrestrained back seat occupant is already well protected in frontals. Lap belted occupants have lower head injury risk but higher torso injury risk than unrestrained back seat occupants. This paper presents the views of the author and not necessarily those of the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Evaluation of a Proposed Hybrid III Hip Modification

1995-11-01
952730
A proposed modification to the Hybrid III 50th percentile male dummy upper femur appears to reduce the chest response problems resulting from femur-pelvis interaction in test exposures more severe than Standard No. 208 testing. When compared to overall repeatability of tests, the modification did not change other dummy response measurements appreciably. The femur-pelvis interaction problem, referred to as “hip lock”, was thought to occur in certain vehicles when the femurs of a passenger side dummy impacting only an air bag bottomed out against the pelvis structure. If metal-to-metal contact occurred, excessive load could be transferred to the chest, leading to elevated chest responses. The most pertinent signs of hip lock occurring appear to be a large, sharply pointed z chest acceleration, and a distinct positive component of the lumbar spine z force following the main negative component.
Technical Paper

Evaluation of Child Safety Seats Based on Sled Tests

1987-11-01
872210
The injury reducing effectiveness of child safety seats in frontal crashes was evaluated, based on 36 frontal or oblique sled tests run with two or more GM three-year-old dummies in the simulated passenger compartment of a car. Unrestrained, correctly restrained and incorrectly restrained dummies were tested at the range of speeds where most nonminor injuries occur (15-35 mph). Accident data from NHTSA files were used to calibrate a relationship between the front-seat unrestrained dummies' HIC and unrestrained children's risk of serious head injuries; also between torso g's and the risk of serious torso injuries. These relationships were used to predict injury risk for the restrained children as a function of crash speed and to compare it to the risk for unrestrained children. The sled test analysis predicted that the 1984 mix of correctly and incorrectly used safety seats reduced serious injury risk by 40 percent relative to the unrestrained child, in frontal crashes.
Technical Paper

Dynamic Properties of the Upper Thoracic Spine-Pectoral Girdle (UTS-PG) System and Corresponding Kinematics in PMHS Sled Tests

2012-10-29
2012-22-0003
Anthropomorphic test devices (ATDs) should accurately depict head kinematics in crash tests, and thoracic spine properties have been demonstrated to affect those kinematics. To investigate the relationships between thoracic spine system dynamics and upper thoracic kinematics in crash-level scenarios, three adult post-mortem human subjects (PMHS) were tested in both Isolated Segment Manipulation (ISM) and sled configurations. In frontal sled tests, the T6-T8 vertebrae of the PMHS were coupled through a novel fixation technique to a rigid seat to directly measure thoracic spine loading. Mid-thoracic spine and belt loads along with head, spine, and pectoral girdle (PG) displacements were measured in 12 sled tests conducted with the three PMHS (3-pt lap-shoulder belted/unbelted at velocities from 3.8 - 7.0 m/s applied directly through T6-T8).
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Development of a New Biofidelity Ranking System for Anthropomorphic Test Devices

2002-11-11
2002-22-0024
A new biofidelity assessment system is being developed and applied to three side impact dummies: the WorldSID-α, the ES-2 and the SID-HIII. This system quantifies (1) the ability of a dummy to load a vehicle as a cadaver does, “External Biofidelity,” and (2) the ability of a dummy to replicate those cadaver responses that best predict injury potential, “Internal Biofidelity.” The ranking system uses cadaver and dummy responses from head drop tests, thorax and shoulder pendulum tests, and whole body sled tests. Each test condition is assigned a weight factor based on the number of human subjects tested to form the biomechanical response corridor and how well the biofidelity tests represent FMVSS 214, side NCAP (SNCAP) and FMVSS 201 Pole crash environments.
X