Refine Your Search

Topic

Author

Search Results

Technical Paper

Where Have We Been - Where Are We Going?

1979-02-01
790011
This paper reviews some of the progress that has been made in recent years in the transportation field by behavioral scientists and human factors engineers. The major areas covered are public transportation systems, railroad systems, highway systems, and personal transportation systems. The report suggests what future problems may be encountered in these areas that will need the attention of human factors specialists.
Technical Paper

Vehicle Design Implications of the Turner Proposal

1989-11-01
892461
The implications of restricting axle loads to preserve pavements while at the same time allowing gross combination weights over 80,000 pounds are examined with respect to the design qualities of the types of heavy trucks that might be developed. The proposed vehicles would have more axles than current designs thereby achieving higher gross combination weights with smaller axle loads. Design factors influencing mobility, productivity, preservation of the highway infrastructure, and performance in safety-related maneuvers are discussed.
Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Technical Paper

Variability in Center of Gravity Height Measurement

1992-02-01
920050
A round-robin center of gravity height measurement study was conducted to assess current practice in the measurement of the vertical position of the center of gravity (c.g.) of light truck-type vehicles. The study was performed by UMTRI for the Motor Vehicle Manufacturers Association. The laboratories participating in the study were those of Chrysler Corporation, Ford Motor Company, General Motors Corporation, and the National Highway Traffic Safety Administration. The primary objectives of this study were (i) to determine to what extent the differing experimental procedures used by the participating laboratories at the time of the study result in significant differences in the measured vertical position of the center of mass of light truck-type vehicles, and (ii) to gain insight into the physical causes of such differences.
Technical Paper

Upper-Extremity Injuries From Steering Wheel Airbag Deployments

1997-02-24
970493
In a review of 540 crashes in which the steering-wheel airbag deployed, 38% of the drivers sustained some level of upper extremity injury. The majority of these were AIS-1 injuries including abrasions, contusions and small lacerations. In 18 crashes the drivers sustained AIS-2 or-3 level upper extremity injuries, including fractures of the radius and/or ulna, or of the metacarpal bones, all related to airbag deployments. It was determined that six drivers sustained the fracture(s) directly from the deploying airbag or the airbag module cover. The remaining 12 drivers had fractures from the extremity being flung into interior vehicle structures, usually the instrument panel. Most drivers were taller than 170 cm and, of the 18 drivers, 10 were males.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Underride in Fatal Rear-End Truck Crashes

2000-12-04
2000-01-3521
For the 1997 data year, UMTRI's Center for National Truck Statistics collected data on rear underride as part of its Trucks Involved in Fatal Accidents (TIFA) survey. Data collected included whether the truck had a rear underride guard, whether the striking vehicle underrode the truck, and how much underride occurred. A primary goal was to evaluate rear underride of straight trucks. Overall, 453 medium and heavy trucks were struck in the rear by a nontruck vehicle in a fatal crash in 1997. Some underride occurred in at least 272 (60.0%) of the rear-end crashes. For straight trucks, there was some underride in 77 (52.0%) of the crashes, no underride occurred in 43 (29.1%) of the fatal rear-end crashes, and underride could not be determined in the remaining 28 (18.9%) straight truck rear-end crashes. Despite the fact that three-fourths of tractor combinations had an underride guard on the trailer, underride was more common for tractor combinations.
Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
Technical Paper

The New Car Assessment Program Has It Led to Stiffer Light Trucks and Vans over the Years?

1999-03-01
1999-01-0064
Since model year 1983, one hundred and seventy five light trucks, vans, and sport utility vehicles (LTVs) have been included in the New Car Assessment Program (NCAP) frontal crash tests. In this frontal test, vehicles are crashed at 35 mph such that the entire front impacts against a rigid, fixed barrier. Instrumented anthropometric dummies are placed in the driver and right front passenger seats. Accelerometers are placed on the vehicle to record the response of the structure during the crash. A number of recent papers have examined the compatibility of LTVs and cars in vehicle-to-vehicle collisions. The studies in these papers, generally, consider three factors for vehicle-to-vehicle compatibility: (1) mass, (2) stiffness, and (3) geometry. On June 5, 1998, Transport Canada and the National Highway Traffic Safety Administration held a forum entitled “Transport-NHTSA International Dialogue on Vehicle Compatibility,” in Windsor, Canada.
Technical Paper

The New Car Assessment Program - Historical Review and Effect

1994-03-01
941052
This report is a condensed version of the December 1993 New Car Assessment Program (NCAP) report to Congress and provides: an historical review and future goals for NCAP. the results of an 18-month study to assess consumer and media needs in understanding and promoting the use of NCAP data. This included consumer focus groups and media studies. These studies indicated that consumers and the media desire comparative safety information on vehicles, a simplified NCAP format to better understand and utilize the crash test results, and would like to see NCAP expanded to include other crash modes. studies of real-world crashes versus NCAP crash tests. These studies conclude that NCAP test conditions approximate real-world crash conditions covering a major segment of the frontal crash safety problem and that there is a significant correlation between NCAP results and real-world fatality risks for restrained drivers.
Technical Paper

Test Planning, Analysis, and Evaluation System (Test PAES): A Data Archiving Tool for Engineers and Scientists

1997-02-24
970453
As Intelligent Transportation Systems (ITS) become more prevalent, the need to archive data from field tests becomes more critical. These data can guide the design of future systems, provide an information conduit among the many developers of ITS, enable comparisons across locations and time, and support development of theoretical models of driver behavior. The National Highway Traffic Safety Administration (NHTSA) is interested in such an archive. While a design for an ITS data archive has not yet been developed, NHTSA has supported the enhancement of the Test Planning, Analysis, and Evaluation System (Test PAES), originally developed by Calspan SRL Corporation for the U. S. Air Force Armstrong Laboratory, for possible use in such an archive. On a single screen, Test PAES enables engineering unit data, audio, and video, as well as a vehicle animation, to be time synchronized, displayed simultaneously, and operated with a single control.
Technical Paper

Subcompact Vehicle Energy-Absorbing Steering Assembly Evaluation

1978-02-01
780899
This paper describes the results of a 2 year study into the field accident performances of two basic designs of energy-absorbing steering assemblies. The two basic designs are the axial-collapse type of steering column used in conjunction with a shear capsule and the self-aligning energy-absorbing steering wheel mounted on a nonstroking column. The study identifies major injury causation factors for these two types of steering assemblies. The analysis was performed on 161 accident cases selected for unrestrained drivers in frontal accidents in two vehicle types.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Simple Predictors of the Performance of A-trains

1993-11-01
932995
Figures of merit describing the performance qualities of multiple-trailer vehicle combinations (for example, rearward amplification) are usually determined from either full-scale vehicle testing or computer simulation analysis. Either method is expensive and time consuming, and restricted in practice to organizations with specialized equipment and engineering skills. One goal of a recent study, conducted by the University of Michigan Transportation Research Institute and sponsored by the Federal Highway Administration, was to use basic vehicle properties to develop simple formulations for estimating the performance qualities of multiple-trailer vehicle combinations. Several hundred computer simulation runs were made using UMTRI's Yaw/Roll program. Five common double-trailer vehicle configurations (defined by trailer lengths and axle configurations) were studied. Each of the five vehicles was subject to fifteen parameter variations.
Technical Paper

Side Impacts to the Passenger Compartment — Clinical Studies from Field Accident Investigations

1989-02-01
890379
The side impact, recently and currently the subject to of much debate, controversy and proposed NHTSA rule making, is a difficult type of crash to significantly reduce serious injuries and fatalites. Results from real-world crash investigations presents a confusing picture for the near-side passenger compartment crash. A direct relationship between the amount of crush and injury severity levels (MAIS) is not apparent. Exemplar cases of tow-a-way/injury crashes are presented at all AIS injury level of drivers in crashes with direct driver door crush damage.
Technical Paper

Safety Implications of Trucks Designed to Weigh Over 80,000 Pounds

1989-08-01
891632
A method is presented for checking vehicle designs to see if they will meet size and weight rules that may be applicable to vehicles weighing more than 80,000 lb. Then, examples of heavy trucks that have been designed to be productive are used in illustrating analytical evaluations of measures of performance in safety-related maneuvering situations. The paper concludes with the point of view that trucks over 80,000 lb could have design attributes that would allow these heavier vehicles to have levels of intrinsic safety exceeding or comparable to those of current trucks.
Technical Paper

Roll-Stability Performance of Heavy-Vehicle Suspensions

1992-11-01
922426
The handling-performance capability of most large commercial vehicles operating on US highways is generally established by the limits of roll stability. Especially for heavy trucks, suspension properties play an important role in establishing the basic roll stability of the vehicle. For all highway vehicles, the limit of static roll stability is established first by the ratio of half-track width to center-of-gravity height, and then by the compliant responses of the vehicle, which lead to outward motion of the center of gravity in a turn. Three suspension properties, roll stiffness, roll-center height, and lateral stiffness, influence this motion significantly. This paper discusses the basic mechanisms of static roll stability and highlights the role of suspension properties in establishing the roll-stability limit. Facilities and procedures for measuring key suspension properties are described, and data from the measurement of ninty-four heavy-vehicle suspensions are presented.
Technical Paper

Reverse Engineering Method for Developing Passenger Vehicle Finite Element Models

1999-03-01
1999-01-0083
A methodology to develop full-vehicle representation in the form of a finite element model for crashworthiness studies has been evolved. Detailed finite element models of two passenger vehicles - 1995 Chevy Lumina and 1994 Dodge Intrepid have been created. The models are intended for studying the vehicle’s behavior in full frontal, frontal offset and side impact collisions. These models are suitable for evaluating vehicle performance and occupant safety in a wide variety of impact situations, and are also suitable for part and material substitution studies to support PNGV (Partnership for New Generation of Vehicles) research. The geometry for these models was created by careful scanning and digitizing of the entire vehicle. High degree of detail is captured in the BIW, the front-end components and other areas involved in frontal, frontal offset and side impact on the driver’s side.
X