Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Will Your Battery Survive a World With Fast Chargers?

2015-04-14
2015-01-1196
Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and to quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Thermal Load Reduction System Development in a Hyundai Sonata PHEV

2017-03-28
2017-01-0186
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
Technical Paper

Thermal Evaluation of Toyota Prius Battery Pack

2002-06-03
2002-01-1962
As part of a U.S. Department of Energy supported study, the National Renewable Energy Laboratory has benchmarked a Toyota Prius hybrid electric vehicle from three aspects: system analysis, auxiliary loads, and battery pack thermal performance. This paper focuses on the testing of the battery back out of the vehicle. More recent in-vehicle dynamometer tests have confirmed these out-of-vehicle tests. Our purpose was to understand how the batteries were packaged and performed from a thermal perspective. The Prius NiMH battery pack was tested at various temperatures (0°C, 25°C, and 40°C) and under driving cycles (HWFET, FTP, and US06). The airflow through the pack was also analyzed. Overall, we found that the U.S. Prius battery pack thermal management system incorporates interesting features and performs well under tested conditions.
Technical Paper

The Potential for Low-Cost Electricity from Concentrating Solar Power Systems

1999-08-02
1999-01-2668
Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.
Technical Paper

The Impact of Metal-free Solar Reflective Film on Vehicle Climate Control

2001-05-14
2001-01-1721
The air-conditioning system can significantly impact the fuel economy and tailpipe emissions of automobiles. If the peak soak temperature of the passenger compartment can be reduced, the air-conditioner compressor can potentially be downsized while maintaining human thermal comfort. Solar reflective film is one way to reduce the peak soak temperature by reducing the solar heat gain into the passenger compartment. A 3M non-metallic solar reflective film (SRF) was tested in two minivans and two sport utility vehicles (SUV). The peak soak temperature was reduced resulting in a quicker cooldown. Using these data, a reduction in air-conditioner size was estimated and the fuel economy and tailpipe emissions were predicted.
Technical Paper

Test Results and Modeling of the Honda Insight using ADVISOR

2001-08-20
2001-01-2537
The National Renewable Energy Laboratory (NREL) has conducted a series of chassis dynamometer and road tests on the 2000 model-year Honda Insight. This paper will focus on results from the testing, how the results have been applied to NREL's Advanced Vehicle Simulator (ADVISOR), and how test results compare to the model predictions and published data. The chassis dynamometer testing included the FTP-75 emissions certification test procedure, highway fuel economy test, US06 aggressive driving cycle conducted at 0°C, 20°C, and 40°C, and the SC03 test performed at 35°C with the air conditioning on and with the air conditioning off. Data collection included bag and continuously sampled emissions (for the chassis tests), engine and vehicle operating parameters, battery cell temperatures and voltages, motor and auxiliary currents, and cabin temperatures.
Technical Paper

Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

2015-04-14
2015-01-0351
Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy's National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads.
Journal Article

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment

2015-04-14
2015-01-0342
It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
Technical Paper

SULEV and “Off-Cycle” Emissions Benefits of a Vacuum-Insulated Catalytic Converter

1999-03-01
1999-01-0461
In previous SAE papers, the initial development and testing of a vacuum-insulated catalytic converter was presented. This paper provides an update of the converter development and an analysis of potential off-cycle emissions savings. Hot vibration, cool-down, and 1975 Federal Test Procedure (FTP-75) emissions test results are provided to demonstrate the effectiveness of design improvements in greatly increasing durability while retaining performance. Using standard drive cycles and “real-world” driving statistics with a vehicle simulator (ADVISOR©), catalyst temperature and vehicle exhaust emissions of a sport utility vehicle (SUV) were predicted for 16 days of driving (107 trips, 770 total miles). Compared to the baseline vehicle with a conventional catalytic converter, the SUV with a vacuum-insulated converter produced 66% less non-methane hydrocarbon (NMHC), 65% less carbon monoxide (CO), and 60% less oxides of nitrogen (NOx).
Technical Paper

Reduction in Vehicle Temperatures and Fuel Use from Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing

2007-04-16
2007-01-1194
A new type of solar-reflective glass that improves reflection of the near-infrared (NIR) portion of the solar spectrum has been developed. Also developed was a prototype solar-reflective paint that increases the NIR reflection of opaque vehicle surfaces while maintaining desired colors in the visible portion of the spectrum. Both of these technologies, as well as solar-powered parked car ventilation, were tested on a Cadillac STS as part of the Improved Mobile Air Conditioning Cooperative Research Program (I-MAC). Significant reductions in interior and vehicle skin temperatures were measured. The National Renewable Energy Laboratory (NREL) performed an analysis to determine the impact of reducing the thermal load on the vehicle. A simplified cabin thermal/fluid model was run to predict the potential reduction in A/C system capacity. The potential reduction in fuel use was calculated using a vehicle simulation tool developed by the U.S. Department of Energy (DOE).
Technical Paper

Quantification of Biodiesel Content in Fuels and Lubricants by FTIR and NMR Spectroscopy

2006-10-16
2006-01-3301
The use of biodiesel requires the development of proper quantification procedures for biodiesel content in blends and in lubricants (fuel dilution in oil). Although the ester carbonyl stretch at 1746 wavenumbers (cm-1) is the most prominent band in the IR spectrum of biodiesel, it is difficult to use for quantification purposes due to a severe fluctuation of absorption strength from sample to sample, even at the same biodiesel content. We have demonstrated that the ester carbonyl fluctuation is not caused by variation in the ester alkyl chain length; but is most likely caused by the degree of hydrogen bonding of the ester functional group with water in the sample. Water molecules can form complexes with the ester compound affecting the strength of the ester carbonyl band. The impact of water on quantification of the biodiesel content of blends was significant, even for B100 samples that met the proposed ASTM D6751 water limit of 500 ppm by D6304 (Karl Fischer Methdod).
Technical Paper

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

2010-04-12
2010-01-0799
The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads.
Technical Paper

Predicting the Fuel Economy Impact of “Cold-Start” for Reformed Gasoline Fuel Cell Vehicles

2003-06-23
2003-01-2253
Hydrogen fuel cell vehicles (FCVs) appear to be a promising solution for the future of clean and efficient personal transportation. Issues of how to generate the hydrogen and then store it on-board to provide satisfactory driving range must still be resolved before they can compete with conventional vehicles. Alternatively, FCVs could obtain hydrogen from on-board reforming of gasoline or other fuels such as methanol or ethanol. On-board reformers convert fuel into a hydrogen-rich fuel stream through catalytic reactions in several stages. The high temperatures associated with fuel processing present an engineering challenge to warm up the reformer quickly and efficiently in a vehicle environment. Without a special warmup phase or vehicle hybridization, the reformer and fuel cell system must provide all power to move the vehicle, including ¼ power in 30 s, and ½ power in 3 min to satisfy the Federal Test Procedure (FTP) cycle demands.
Technical Paper

Performance of a NOx Adsorber Catalyst/Diesel Particle Filter System for a Heavy-Duty Engine During a 2000-Hour Endurance Test

2005-04-11
2005-01-1760
In this study, a 15-L heavy-duty diesel engine and an emission control system consisting of diesel oxidation catalysts, NOx adsorber catalysts, and diesel particle filters were evaluated over the course of a 2000 hour aging study. The work is a follow-on to a previously documented development effort to establish system regeneration and sulfur management strategies. The study is one of five projects being conducted as part of the U.S. Department of Energy's Advanced Petroleum Based Fuels - Diesel Emission Control (APBF-DEC) activity. The primary objective of the study was to determine if the significant NOx and PM reduction efficiency (>90%) demonstrated in the development work could be maintained over time with a 15-ppm sulfur diesel fuel. The study showed that high NOx reduction efficiency can be restored after 2000 hours of operation and 23 desulfation cycles.
Technical Paper

Optimization of Vehicle Air Conditioning Systems Using Transient Air Conditioning Performance Analysis

2001-05-14
2001-01-1734
The National Renewable Energy Laboratory (NREL) has developed a transient air conditioning (A/C) system model using SINDA/FLUINT analysis software. It captures all the relevant physics of transient A/C system performance, including two-phase flow effects in the evaporator and condenser, system mass effects, air side heat transfer on the condenser/evaporator, vehicle speed effects, temperature-dependent properties, and integration with a simplified cabin thermal model. It has demonstrated robust and powerful system design optimization capabilities. Single-variable and multiple variable design optimizations have been performed and are presented. Various system performance parameters can be optimized, including system COP, cabin cool-down time, and system heat load capacity. This work presents this new transient A/C system analysis and optimization tool and shows some high-level system design conclusions reached to date.
Technical Paper

Modeling of an Electric Vehicle Thermal Management System in MATLAB/Simulink

2015-04-14
2015-01-1708
Electric vehicles (EVs) need highly optimized thermal management systems to improve range. Climate control can reduce vehicle efficiency and range by more than 50%. Due to the relative shortage of waste heat, heating the passenger cabin in EVs is difficult. Cabin cooling can take a high portion of the energy available in the battery. Compared to internal combustion engine-driven vehicles, different heating methods and more efficient cooling methods are needed, which can make EV thermal management systems more complex. More complex systems typically allow various alternative modes of operation that can be selected based on driving and ambient conditions. A good system simulation tool can greatly reduce the time and expense for developing these complex systems. A simulation model should also be able to efficiently co-simulate with vehicle simulation programs, and should be applicable for evaluating various control algorithms.
Technical Paper

Modeling Control Strategies and Range Impacts for Electric Vehicle Integrated Thermal Management Systems with MATLAB/Simulink

2017-03-28
2017-01-0191
The National Renewable Energy Laboratory’s (NREL’s) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control the system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate.
Technical Paper

MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

2016-04-05
2016-01-0230
The National Renewable Energy Laboratory’s (NREL’s) CoolSim MATLAB/Simulink modeling framework was expanded by including a newly developed coolant loop solution method aimed at reducing the simulation effort for complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by MAHLE Inc. and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2°C and 43°C.
X