Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Use of a Thermal Manikin to Evaluate Human Thermoregulatory Responses in Transient, Non-Uniform, Thermal Environments

2004-07-19
2004-01-2345
People who wear protective uniforms that inhibit evaporation of sweat can experience reduced productivity and even health risks when their bodies cannot cool themselves. This paper describes a new sweating manikin and a numerical model of the human thermoregulatory system that evaluates the thermal response of an individual to transient, non-uniform thermal environments. The physiological model of the human thermoregulatory system controls a thermal manikin, resulting in surface temperature distributions representative of the human body. For example, surface temperatures of the extremities are cooler than those of the torso and head. The manikin contains batteries, a water reservoir, and wireless communications and controls that enable it to operate as long as 2 hours without external connections. The manikin has 120 separately controlled heating and sweating zones that result in high resolution for surface temperature, heat flux, and sweating control.
Technical Paper

Predicting Human Thermal Comfort in Automobiles

2005-05-10
2005-01-2008
The National Renewable Energy Laboratory (NREL) has developed a suite of thermal comfort tools to help develop smaller and more efficient climate control systems in automobiles. The tools consist of a thermal comfort manikin, physiological model, and psychological model that are linked together to assess comfort in a transient non-homogeneous environment. The manikin, which consists of 120 individually controlled zones, mimics the human body by heating, sweating, and breathing. The physiological model is a 40,000-node numerical simulation of the human body. The model receives heat loss data from the manikin and predicts the human physiological response and skin temperatures. Based on human subject test data, the psychological model takes the temperatures of the human and predicts thermal sensation and comfort.
Technical Paper

CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool

2011-04-12
2011-01-0656
In the United States, intercity long-haul trucks idle approximately 1,800 hrs per year primarily for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel [1]. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working on solutions to this challenge through the CoolCab project. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. To help assess and improve idle reduction solutions, the CoolCalc software tool was developed.
Technical Paper

Comparison of Indoor Vehicle Thermal Soak Tests to Outdoor Tests

2004-03-08
2004-01-1376
Researchers at the National Renewable Energy Laboratory conducted outdoor vehicle thermal soak tests in Golden, Colorado, in September 2002. The same environmental conditions and vehicle were then tested indoors in two DaimlerChrysler test cells, one with metal halide lamps and one with infrared lamps. Results show that the vehicle's shaded interior temperatures correlated well with the outdoor data, while temperatures in the direct sun did not. The large lamp array situated over the vehicle caused the roof to be significantly hotter indoors. Yet, inside the vehicle, the instrument panel was cooler due to the geometry of the lamp array and the spectral difference between the lamps and sun. Results indicate that solar lamps effectively heat the cabin interior in indoor vehicle soak tests for climate control evaluation and SCO3 emissions tests. However, such lamps do not effectively assess vehicle skin temperatures and glazing temperatures.
Journal Article

Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather

2016-04-05
2016-01-0262
When operated, the cabin climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all-electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the vehicle climate control system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid-connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort.
X