Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment

2015-04-14
2015-01-0342
It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

2013-09-24
2013-01-2471
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
Technical Paper

Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

2015-09-29
2015-01-2812
This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method.
Technical Paper

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus

2011-04-12
2011-01-0863
Plug-in hybrid electric vehicle (PHEV) technology may reduce fuel consumption and tailpipe emissions in many medium- and heavy-duty vehicle vocations, including school buses. The true magnitude of these reductions is best assessed by comparative testing over relevant drive cycles. The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data, and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation PHEV school bus equipped with a 6.4 L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. For a baseline comparison, a Bluebird 7.2 L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity.
X