Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Demanded Power and RDE Aggressiveness Metrics to Analyze the Impact of CACC Aggressiveness on Heavy Duty Platooning Power Consumption

2021-04-06
2021-01-0069
Presently, a main mobility sector objective is to reduce its impact on the global greenhouse gas emissions. While there are many techniques being explored, a promising approach to improve fuel economy is to reduce the required energy by using slipstream effects. This study analyzes the demanded engine power and mechanical energy used by heavy-duty trucks during platooning and non-platooning operation to determine the aerodynamic benefits of the slipstream. A series of platooning tests utilizing class 8 semi-trucks platooning via Cooperative Adaptive Cruise Control (CACC) are performed. Comparing the demanded engine power and mechanical energy used reveals the benefits of platooning on the aerodynamic drag while disregarding any potential negative side effects on the engine. However, energy savings were lower than expected in some cases.
Technical Paper

Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

2015-04-14
2015-01-0351
Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy's National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads.
Journal Article

Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

2013-04-08
2013-01-1033
We compare the simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional heavy duty (HD) truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential benefit for HD hybrid vehicles during highway driving.
Technical Paper

Real-Time Dynamic Brake Assessment for Heavy Commercial Vehicle Safety

2020-10-05
2020-01-1646
This paper summarizes initial results and findings of a model developed to determine the braking performance of commercial motor vehicles in motion regardless of brake type or gross weight. Real-world data collected by Oak Ridge National Laboratory for a U.S. Department of Energy study was used to validate the model. Expanding on previous proof-of-concept research showing the linear relationship of brake application pressure and deceleration additional parameters such as elevation were added to the model. Outputs from the model consist of coefficients calculated for every constant pressure braking event from a vehicle that can be used to calculate a deceleration and thus compute a stopping distance for a given scenario. Using brake application pressure profiles derived from the dataset, stopping distances for light and heavy loads of the same vehicle were compared for various speed and road grades.
Technical Paper

Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

2015-09-29
2015-01-2773
The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study analyzed the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors included vehicle weight and the coefficients of rolling resistance and aerodynamic drag. Simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles.
Journal Article

Potentials for Platooning in U.S. Highway Freight Transport

2017-03-28
2017-01-0086
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as a means for improving road transportation systems by reducing fuel consumption – and related emissions – while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, which are currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning.
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

2013-09-24
2013-01-2471
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
Journal Article

Optimizing Long Term Hydrogen Fueling Infrastructure Plans on Freight Corridors for Heavy Duty Fuel Cell Electric Vehicles

2023-04-11
2023-01-0064
The development of a future hydrogen energy economy will require the development of several hydrogen market and industry segments including a hydrogen based commercial freight transportation ecosystem. For a sustainable freight transportation ecosystem, the supporting fueling infrastructure and the associated vehicle powertrains making use of hydrogen fuel will need to be co-established. This paper develops a long-term plan for refueling infrastructure deployment using the OR-AGENT (Optimal Regional Architecture Generation for Electrified National Transportation) tool developed at the Oak Ridge National Laboratory, which has been used to optimize the hydrogen refueling infrastructure requirements on the I-75 corridor for heavy duty (HD) fuel cell electric commercial vehicles (FCEV).
Technical Paper

Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

2015-09-29
2015-01-2812
This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method.
Technical Paper

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

2012-09-24
2012-01-2049
This research project compares the in-use and laboratory-derived fuel economy of a medium-duty hybrid electric drivetrain with “engine off at idle” capability to a conventional drivetrain in a typical commercial package delivery application. Vehicles in this study included eleven model year 2010 Freightliner P100H hybrids that were placed in service at a United Parcel Service (UPS) facility in Minneapolis, Minn., during the first half of 2010. These hybrid vehicles were evaluated for 18 months against eleven model year 2010 Freightliner P100D diesels that were placed in service at the same facility a couple months after the hybrids. Both vehicle study groups use the same model year 2009 Cummins ISB 200 HP engine. The vehicles of interest were chosen by comparing the average daily mileage of the hybrid group to that of a similar size and usage diesel group.
Technical Paper

King County Metro - Allison Hybrid Electric Transit Bus Testing

2006-10-31
2006-01-3570
Chassis dynamometer testing of two 60 foot articulated transit busses, one conventional and one hybrid, was conducted at the National Renewable Energy Laboratory's, ReFUEL facility. Both test vehicles were 2004 New Flyer busses powered by Caterpillar C9 8.8L engines, with the hybrid vehicle incorporating a GM-Allison advanced hybrid electric drivetrain. Both vehicles also incorporated an oxidizing diesel particulate filter. The fuel economy and emissions benefits of the hybrid vehicle were evaluated over four driving cycles; Central Business District (CBD), Orange County (OCTA), Manhattan (MAN) and a custom test cycle developed from in-use data of the King County Metro (KCM) fleet operation. The hybrid vehicle demonstrated the highest improvement in fuel economy (mpg basis) over the low speed, heavy stop-and-go driving conditions of the Manhattan test cycle (74.6%) followed by the OCTA (50.6%), CBD (48.3%) and KCM (30.3%).
Technical Paper

Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control

2018-04-03
2018-01-1181
An integrated adaptive cruise control (ACC) and cooperative ACC (CACC) was implemented and tested on three heavy-duty tractor-trailer trucks on a closed test track. The first truck was always in ACC mode, and the followers were in CACC mode using wireless vehicle-vehicle communication to augment their radar sensor data to enable safe and accurate vehicle following at short gaps. The fuel consumption for each truck in the CACC string was measured using the SAE J1321 procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb, demonstrating the effects of: inter-vehicle gaps (ranging from 3.0 s or 87 m to 0.14 s or 4 m, covering a much wider range than previously reported tests), cut-in and cut-out maneuvers by other vehicles, speed variations, the use of mismatched vehicles (standard trailers mixed with aerodynamic trailers with boat tails and side skirts), and the presence of a passenger vehicle ahead of the platoon.
Journal Article

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

2013-09-24
2013-01-2468
This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen.
Technical Paper

Impact to Cooling Airflow from Truck Platooning

2020-04-14
2020-01-1298
We investigate tradeoffs between the airflow strategies related to engine cooling and the aerodynamic-enabled fuel savings created by platooning. By analyzing air temperatures, engine temperatures and cooling air flow at different platoon distances, we show the thermal impact to the engine from truck platooning. Previously, we collected wind and thermal data for numerous heavy-duty truck platoon configurations (gaps ranging from 4 to 87 meters) and reported the significant fuel savings enabled by these configurations. The fuel consumption for all trucks in the platoon were measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate while travelling at 65 mph and loaded to a gross weight of 65,000 lb.
Technical Paper

Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks

2014-04-01
2014-01-0680
Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation.
Journal Article

Impact of Mixed Traffic on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0679
A two-truck platoon based on a prototype cooperative adaptive cruise control (CACC) system was tested on a closed test track in a variety of realistic traffic and transient operating scenarios - conditions that truck platoons are likely to face on real highways. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate, serving as proxies to evaluate the impact of aerodynamic drag reduction under constant-speed conditions. These measurements demonstrate the effects of: the presence of a multiple-passenger-vehicle pattern ahead of and adjacent to the platoon, cut-in and cut-out manoeuvres by other vehicles, transient traffic, the use of mismatched platooned vehicles (van trailer mixed with flatbed trailer), and the platoon following another truck with adaptive cruise control (ACC).
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Journal Article

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

2014-09-30
2014-01-2375
This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P10HH hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Technical Paper

Heavy Vehicle Auxiliary Load Electrification for the Essential Power System Program: Benefits, Tradeoffs, and Remaining Challenges

2002-11-18
2002-01-3135
Intelligent management of vehicle auxiliary power can reduce fuel consumed by Class 8 tractor-trailers. Through the U.S. Department of Energy's Essential Power System (EPS) Program, the National Renewable Energy Laboratory is investigating electrification of major mechanically driven auxiliary loads in heavy vehicles. This paper describes the benefits and tradeoffs of a managed EPS and quantifies the potential energy savings of component electrification. Simulations predict that maximum fuel economy increases of 9%-15% (urban drive cycle) and 5%-8% (constant 65 mph) are possible. Future EPS work will require a systems approach with a better understanding of duty cycles and auxiliary needs.
X