Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wind-Load and Surface-Pressure Measurements of the Aerodynamic Interactions of a Passenger Vehicle with Adjacent-Lane Vehicles

2024-04-09
2024-01-2549
The mutual aerodynamic influence of road vehicles in close proximity is known to alter significantly the drag performance of the vehicles. This paper presents an extended analysis from a study of two open-access road-vehicle shapes (a DrivAer Notchback model and an AeroSUV Estateback model) in close lateral proximity with each other, or with other vehicle shapes. Wind-tunnel measurements were conducted for a yaw-angle range of ±10°, for lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. The results of a previous analysis of the data, which examined aerodynamic force measurements only, showed changes in drag coefficient of ±20% or more depending on the relative locations and wind conditions. In this paper, the force-coefficient results reexamined, and surface-pressure measurements are introduced to investigate the sources of the performance changes.
Technical Paper

Wind Tunnel Study on the “Wake Bubble” of Model Truck

2008-04-14
2008-01-0739
Heavy traffic volume makes tailgating a common picture on the road today. Wake interference, particularly in the scenario when a relatively small sedan drives into the wake of a large truck, may raise some serious highway safety concerns. In this paper, the characteristics of the separation bubble of model trucks with various degrees of details are studied. The objective is to find out the impact of truck model details on the characteristics of the wake bubble. Our wind tunnel results revealed that the degree of model detail has a significant effect on the wake bubble; the bubble length increases with model details.
Technical Paper

Wear and Corrosion Behaviours of PEA Alumina Coatings on Gray Cast Iron

2022-03-29
2022-01-0329
Alumina (Al2O3) thin film coatings are applied on Al alloys using Plasma Electrolytic Oxidation (PEO) method to reduce the wear and corrosion problems. Plasma Electrolytic Aluminating (PEA) is a technique which could generate Alumina coatings on cast iron, mild steel and copper alloys. In this study, the aim is to explore the anti-wear and anti-corrosion behaviours of PEA Alumina coatings on gray cast iron. The dry sliding tribology test data was obtained from Pin-on-Disk (POD) tests against SAE 52100 steel and Tungsten Carbide (WC) counterfaces. Comparing with the PEO Alumina coatings, the PEA Alumina coating has much lower Coefficient of Friction (COF) and less wear. The microstructure, chemical composition and phase composition of this coating were investigated with Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD), respectively. There was FeO (or FeAl2O4) found on the PEA Alumina coating.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Technical Paper

Variable Torque Distribution Yaw Moment Control for Hybrid Powertrains

2007-04-16
2007-01-0278
This paper proposes and evaluates the use of a robust variable torque distribution (VTD) yaw moment control for an all wheel drive (AWD) hybrid vehicle prototype currently under development. The proposed VTD controller was used to improve the linearity of vehicle response to driver input through the modulation of front-to-rear torque distribution and a corrective torque differential between the left and right rear wheels. The development of a non-linear vehicle model and a reference model tracking sliding mode based control are discussed. The efficacy of the proposed control system was demonstrated through the use of numerical simulations using the developed non-linear vehicle model. The simulation results presented indicate the effectiveness of the proposed system and the potential restrictions to such a system including tire saturation and drivetrain component limitations.
Technical Paper

Validation and Instrumentation of a Small Modular Multi-Stage Axial Compressor for Ice Crystal Icing Research

2019-06-10
2019-01-1940
The National Research Council of Canada (NRC) has undergone the development of a Small Axial Compressor Rig for modelling altitude ice accretion in aircraft engines. The rig consists of two axial compressor stages measuring approximately 150mm in diameter, an extension duct to allow residence time for partial melting of ice crystals and a test piece. The axial compressor stages are intended to provide realistic engine conditioning such as fracture, pressure rise, temperature rise and centrifuging of glaciated ice crystals entering the rig. The rig was designed for use in altitude icing wind tunnels such as the NRC’s altitude icing wind tunnel (AIWT), research altitude test facility (RATFac.), and those of other organization such as NASA Glenn and Technical University of Braunshweig. Previous development work [1] provided partial validation of the aerodynamic performance of just the first compressor stage at 90% power.
Journal Article

Validation Testing of Lithium Battery Performance-Based Packaging for Use in Air Transportation (SAE G-27)

2020-03-10
2020-01-0042
The SAE G-27 committee was tasked by ICAO to develop a performance-based packaging standard for lithium batteries transported as cargo on aircraft. The standard details test criteria to qualify packages of lithium batteries & cells for transportation as cargo on-board passenger aircraft. Lithium batteries and cells have been prohibited from shipment as cargo on passenger aircraft since 2016. This paper summarizes the results of the tests conducted by Transport Canada and National Research Council Canada to support the development of this standard with evidence-based recommendations. It includes a description of the test specimens, the test set up, instrumentation used, and test procedures following the standard as drafted to date. The study considered several lithium-ion battery and cell chemistries that were tested under various proposed testing scenarios in the draft standard.
Technical Paper

Transient Response of Minichannel Heat Exchanger Using Al2O3-EG/W Nanofluid

2016-04-05
2016-01-0229
A numerical study is performed to investigate the transient heat transfer and flow characteristics of aluminum oxide (Al2O3) nanoparticles dispersed in 50:50 ethylene glycol/water (EG/W) base fluid in a multipass crossflow minichannel heat exchanger. The time dependent thermal responses of the system in a laminar regime are predicted by solving the conservation equations using the finite volume method and SIMPLE algorithm. The transient regime is caused by a step change of nanofluid mass flow rate at the inlet of the minichannel heat exchanger. This step change can be analogous with a thermostat operation. In this study, three volume fractions up to 3 percent of Al2O3 nanoparticles dispersed to the base fluid EG/W are modeled and analyzed. In the numerical simulation, Al2O3-EG/W nanofluid is considered as a homogenous single-phase fluid. An analysis of the transient response for the variation of nanofluids volume concentrations is conducted.
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Journal Article

Track-Based Aerodynamic Testing of a Two-Truck Platoon

2021-04-06
2021-01-0941
Fuel savings from truck platooning are generally attributed to an aerodynamic drag-reduction phenomena associated with close-proximity driving. The current paper is the third in a series of papers documenting track testing of a two-truck platoon with a Cooperative Adaptive Cruise Control (CACC) system where fuel savings and aerodynamics measurements were performed simultaneously. Constant-speed road-load measurements from instrumented driveshafts and on-board wind anemometry were combined with vehicle measurements to calculate the aerodynamic drag-area of the vehicles. The drag-area results are presented for each vehicle in the two-truck platoon, and the corresponding drag-area reductions are shown for a variety of conditions: gap separation distances (9 m to 87 m), lateral offsets (up to 1.3 m), dry-van and flatbed trailers, and in the presence of surrounding traffic.
Journal Article

Track-Based Aerodynamic Testing of a Heavy-Duty Vehicle: Coast-Down Measurements

2016-09-27
2016-01-8152
In an effort to support Phase 2 of Greenhouse Gas Regulations for Heavy-Duty Vehicles in the United States, a track-based test program was jointly supported by Transport Canada (TC), Environment and Climate Change Canada (ECCC), the U.S. Environmental Protection Agency (EPA), and the National Research Council Canada (NRC) to assess aerodynamic evaluation methodologies proposed by the EPA and to provide a site-verification exercise against a previous test campaign with the same vehicle. Coast-down tests were conducted with a modern aerodynamic tractor matched to a conventional 16.2 m (53 ft) dry-van trailer, and outfitted with two drag reduction technologies. Enhanced wind-measurement instrumentation was introduced, consisting of a vehicle-mounted fast-response pressure probe and track-side sonic anemometers that, when used in combination, provided improved reliability for the measurements of wind conditions experienced by the vehicle.
Technical Paper

Thermo-Mechanical Fatigue (TMF) Life of Ductile SiMo Cast Iron with Aluminum Addition

2021-04-06
2021-01-0281
Strain controlled thermo-mechanical fatigue (TMF) tests were conducted on a high Silicon ductile cast iron (SiMo) as the baseline material and a similar SiMo cast iron with aluminum addition (SiMoAl). The much improved fatigue life with aluminum addition is analyzed using the integrated creep-fatigue theory (ICFT) in combination with the metallurgical analysis on the tested coupons. Addition of about 3 wt.% Aluminum significantly improved TMF life of the SiMo cast iron. The results are explained by elimination of brittleness at middle temperature range, the higher flow stress, lower creep rate and higher oxidation resistance from Al addition.
Technical Paper

Thermal Efficiency Analyses of Diesel Low Temperature Combustion Cycles

2007-10-29
2007-01-4019
Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles on a common-rail diesel engine with a conventional diesel fuel. Empirical studies have been conducted under independently controlled exhaust gas recirculation, intake boost, and exhaust backpressure. Up to 8 fuel injection pulses per cylinder per cycle have been applied to modulate the homogeneity history of the early injection diesel low temperature combustion operations in order to improve the phasing of the combustion process. The impact of heat release phasing, duration, shaping, and splitting on the thermal efficiency has been analyzed with zero-dimensional engine cycle simulations. This paper intends to identify the major parameters that affect diesel low temperature combustion engine thermal efficiency.
Journal Article

The Influence of Traffic Wakes on the Aerodynamic Performance of Heavy Duty Vehicles

2023-04-11
2023-01-0919
Road vehicles have been shown to experience measurable changes in aerodynamic performance when travelling in everyday safe-distance driving conditions, with a major contributor being the lower effective wind speed associated with the wakes from forward vehicles. Using a novel traffic-wake-generator system, a comprehensive test program was undertaken to examine the influence of traffic wakes on the aerodynamic performance of heavy-duty vehicles (HDVs). The experiments were conducted in a large wind tunnel with four primary variants of a high-fidelity 30%-scale tractor-trailer model. Three high-roof-tractor models (conventional North-American sleeper-cab and day-cab, and a zero-emissions-cab style) paired with a standard dry-van trailer were tested, along with a low-roof day-cab tractor paired with a flat-bed trailer.
Technical Paper

The Impact of Intake Dilution and Combustion Phasing on the Combustion Stability of a Diesel Engine

2014-04-01
2014-01-1294
Conventionally, the diesel fuel ignites spontaneously following the injection event. The combustion and injection often overlap with a very short ignition delay. Diesel engines therefore offer superior combustion stability characterized by the low cycle-to-cycle variations. However, the enforcement of the stringent emission regulations necessitates the implementation of innovative diesel combustion concepts such as the low temperature combustion (LTC) to achieve ultra-low engine-out pollutants. In stark contrast to the conventional diesel combustion, the enabling of LTC requires enhanced air fuel mixing and hence a longer ignition delay is desired. Such a decoupling of the combustion events from the fuel injection can potentially cause ignition discrepancy and ultimately lead to combustion cyclic variations.
Technical Paper

The Fate of Chlorine and Heavy Metals During Pyrolysis of Automobile Shredder Residue*

1999-03-01
1999-01-0671
One of the major sources of chlorine in automobiles is polyvinyl chloride (PVC). When old discarded automobiles enter the recycling loop by far the largest percent of this material finds its way into the solid waste fraction known as automobile shredder residue (ASR). While the majority of this waste is currently disposed of in landfills new processes are currently being evaluated to recycle and recover the valuable resources contained in this solid waste. Pyrolysis, the thermal cracking of the polymeric materials present in ASR, to recover the petrochemical hydrocarbons is one such technology which is receiving attention. However, like combustion with energy recovery, the pyrolysis process is receiving close scrutiny in terms of its environmental impact. These concerns have centered around the fate of the chlorine and the heavy metals present in the ASR.
Journal Article

The Effects of Ground Simulation on Tractor-Trailer Combinations

2013-09-24
2013-01-2454
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is equipped with a boundary layer suction system, center belt and wheel rollers to simulate ground motion relative to test articles. Although these systems were originally commissioned for testing of full-scale automotive models, they are appropriately sized for ground simulation with half-scale tractor-trailer combinations. The size of the tunnel presents an opportunity to test half-scale commercial vehicles at full-scale Reynolds numbers with a model that occupies 3% of the test section cross-sectional area. This study looks at the effects of ground simulation on the force and pressure data of a half-scale model with rotating tractor wheels. A series of model changes, typical of a drag reduction program, were undertaken and each configuration was tested with both a fixed floor and with full-ground simulation to evaluate the effects of this technology on the total and incremental drag coefficients.
Technical Paper

Technique for Ice Crystal Particle Size Measurements and Results for the National Research Council of Canada Altitude Ice Crystal Test System

2015-06-15
2015-01-2125
This paper describes the equipment, analysis methods and results obtained for particle size measurements based on a particle imaging velocimetry (PIV) system in which a short duration laser pulse is used to backlight airborne particles. This produces high quality and high resolution images of fast moving airborne particles in a non-intrusive manner. This imaging technique is also used to examine particle morphology and 2D particle trajectory and velocity. The image analysis methods are outlined and validation test results discussed which show the measurement of reference glass beads between 20 and 400 microns were generally to within their stated size. As well, validation testing using known icing wind tunnel droplet distributions were compared with Spraytek 2000 Malvern droplet size measurements and showed agreement of the MVD's to be within ±5% for distributions having nominally 20, 40 and 80 micron MVD's.
Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
X